【題目】已知:如圖,一次函數(shù)y=﹣2x與二次函數(shù)y=ax2+2ax+c的圖象交于A、B兩點(點A在點B的右側),與其對稱軸交于點C.

(1)求點C的坐標;
(2)設二次函數(shù)圖象的頂點為D,點C與點D關于x軸對稱,且△ACD的面積等于2.
①求二次函數(shù)的解析式;
②在該二次函數(shù)圖象的對稱軸上求一點P(寫出其坐標),使△PBC與△ACD相似.

【答案】
(1)

解:∵y=ax2+2ax+c=a(x+1)2+c﹣a,

∴它的對稱軸為x=﹣1.

又∵一次函數(shù)y=﹣2x與對稱軸交于點C,

∴y=2.

∴C點的坐標為(﹣1,2)


(2)

解:①∵點C與點D 關于x軸對稱,

∴點D的坐標為(﹣1,﹣2).

∴CD=4,

∵△ACD的面積等于2.

∴點A到CD的距離為1,C點與原點重合,點A的坐標為(0,0).

設二次函數(shù)為y=a(x+1)2﹣2過點A,則a=2,

∴y=2x2+4x.

②設P(﹣1,t).

交點B的坐標為(﹣3,6),D(﹣1,﹣2),C(﹣1,2),A(0,0),

則BC=2 ,PC=t﹣2,CD=4,AD= ,

①當△PBC∽△CAD時, = ,即 =

解得t=10,

故點P的坐標為(﹣1,10),

②當△PBC∽△ACD時, = ,即 = ,

解得t= ,

故點P的坐標為(﹣1, ),

綜上所述,點P的坐標為(﹣1,10),(﹣1, ).


【解析】(1)把拋物線對稱軸方程x=﹣1代入直線方程,求得相應的縱坐標,易得點C的坐標;(2)①根據(jù)點的坐標的對稱性易得拋物線頂點坐標D(﹣1,﹣2),故CD=4,結合三角形的面積公式可以求得點A的坐標,將點A的坐標分別代入拋物線解析式為y=a(x+1)2﹣2,利用待定系數(shù)法求得拋物線的解析式即可;②需要分類討論:△PBD∽△CAD、△PBD∽△ACD.
【考點精析】根據(jù)題目的已知條件,利用相似三角形的判定與性質的相關知識可以得到問題的答案,需要掌握相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸交于點C,且OA=OC.則下列結論:
①abc<0;②>0;③ac﹣b+1=0;④OAOB=﹣
其中正確結論的個數(shù)是(  )

A.4
B.3
C.2
D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,OA=AB,∠OAB=90°,反比例函數(shù)y= (x>0)的圖象經(jīng)過A,B兩點.若點A的坐標為(n,1),則k的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=﹣ x+6分別與x軸、y軸交于A、B兩點,直線y= x與AB交于點C,與過點A且平行于y軸的直線交于點D,點E從點A出發(fā),以每秒1個單位的速度沿x軸向左運動,過點E作x軸的垂線,分別交直線AB、OD于P、Q兩點,以PQ為邊向右作正方形PQMN.設正方形PQMN與△ACD重疊部分(陰影部分)的面積為S(平方單位),點E的運動時間為ts(t>0).

(1)求點C的坐標;
(2)當0<t<5時,求S的最大值;
(3)當t在何范圍時,點(4, )被正方形PQMN覆蓋?請直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在平行四邊形ABCD和矩形ABEF中,AC與DF相交于點G.
(1)試說明DF=CE;
(2)若AC=BF=DF,求∠ACE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC=BD=6,E、F、G、H分別是AB、BC、CD、DA的中點,則EG2+FH2=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一列快車由甲地開往乙地,一列慢車由乙地開往甲地,兩車同時出發(fā),勻速運動,快車離乙地的路程y1(km)與行駛的時間x(h)之間的函數(shù)關系,如圖中AB所示;慢車離乙地的路程y2(km)與行駛的時間x(h)之間的函數(shù)關系,如圖中線段OC所示,根據(jù)圖象進行以下研究.

解讀信息:
(1)甲,乙兩地之間的距離為 km;
(2)線段AB的解析式為;線段OC的解析式為;
(3)設快,慢車之間的距離為y(km),求y與慢車行駛時間x(h)的函數(shù)關系式,并畫出函數(shù)圖象.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中央電視臺舉辦的“中國漢字聽寫大會”節(jié)目受到中學生的廣泛關注,某中學為了了解學生對觀看“中國漢字聽寫大會”節(jié)目的喜愛程度,對該校部分學生進行了隨機抽樣調查,并繪制出如圖所示的兩幅統(tǒng)計圖.在條形圖中,從左向右依次為A類(非常喜歡),B類(較喜歡),C類(一般),D類(不喜歡),請結合兩幅統(tǒng)計圖,回答下列問題

(1)寫出本次抽樣調查的樣本容量;
(2)請補全兩幅統(tǒng)計圖;
(3)若該校有2000名學生.請你估計觀看“中國漢字聽寫大會”節(jié)目不喜歡的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人相約登山,甲、乙兩人距地面的高度y(米)與登山時間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息,下列說法正確的個數(shù)為( ) (1 )甲登山上升的速度是每分鐘10米;(2)乙在A地時距地面的高度b為30米;(3)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,乙登山1分鐘時,距地面的高度為15米;(4)登山時間為4分鐘,9分鐘,15分鐘時,甲、乙兩人距地面的高度差為50米.

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

同步練習冊答案