【題目】如圖,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y= (k≠0)的圖象交于A(﹣3,2),B(2,n).
(1)求反比例函數(shù)y= 的解析式;
(2)求一次函數(shù)y=ax+b的解析式;
(3)觀察圖象,直接寫出不等式ax+b< 的解集.
【答案】
(1)解:把A(﹣3,2)代入反比例解析式得:k=﹣6,
則反比例解析式為y=﹣ ;
(2)解:把B(2,n)代入反比例解析式得:n=﹣3,即B(2,﹣3),
把A(﹣3,2)與B(2,﹣3)代入y=ax+b中得: ,
解得:a=﹣1,b=﹣1,
則一次函數(shù)解析式為y=﹣x﹣1
(3)解:∵A(﹣3,2),B(2,﹣3),
∴結合圖象得:不等式ax+b< 的解集為﹣3<x<0或x>2
【解析】(1)把A坐標代入反比例解析式求出k的值,確定出反比例解析式;(2)把B坐標代入反比例解析式求出n的值,確定出B坐標,將A與B坐標代入一次函數(shù)解析式求出a與b的值,即可確定出一次函數(shù)解析式;(3)根據(jù)A與B橫坐標,結合圖象確定出所求不等式的解集即可.
科目:初中數(shù)學 來源: 題型:
【題目】某市2009年元旦的最高氣溫為12℃,最低氣溫為-2℃,那么這天的最高氣溫比最低氣溫高 ( )
A.-14℃B.-10℃C.14℃D.10℃
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,⊙P與x軸相切,與y軸相交于A(0,2),B(0,8),則圓心P的坐標是( )
A.(5,3)
B.(5,4)
C.(3,5)
D.(4,5)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解題: 學習了二次根式后,你會發(fā)現(xiàn)一些含有根號的式子可以寫成另一個式子的平方,如3+2 =(1+)2, 我們來進行以下的探索:
設a+b=(m+n)2(其中a,b,m,n都是正整數(shù)),則有a+b=m2+2n2+2mn,∴a=m+2n2 , b=2mn, 這樣就得出了把類似a+b的式子化為平方式的方法.
請仿照上述方法探索并解決下列問題:
(1)當a,b,m,n都為正整數(shù)時,若a﹣b=(m﹣n)2 , 用含m,n的式子分別表示a,b,得a=________,b=________;
(2)利用上述方法,找一組正整數(shù)a,b,m,n填空:___﹣_____=(____﹣_____)2
(3)a﹣4=(m﹣n)2且a,m,n都為正整數(shù),求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某銷售公司推銷一種產品,設x(件)是推銷產品的數(shù)量,y(元)是付給推銷員的月報酬.公司付給推銷員的月報酬的兩種方案如圖所示,推銷員可以任選一種與公司簽訂合同,看圖解答下列問題:
(1)求每種付酬方案y關于x的函數(shù)表達式;
(2)當選擇方案一所得報酬高于選擇方案二所得報酬時,求x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC在直角坐標系中,
(1)請寫出△ABC各點的坐標。
(2)求出S△ABC
(3)若把△ABC向上平移2個單位,再向右平移2個單位得△A′B′C′,在圖中畫出△ABC變化位置,并寫出A′、B′、C′的坐標。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】谷歌人工智能AlphaGo機器人與李世石的圍棋挑戰(zhàn)賽引起人們的廣泛關注,人工智能完勝李世石.某教學網(wǎng)站開設了有關人工智能的課程并策劃了A,B兩種網(wǎng)上學習的月收費方式:
收費 方式 | 月使用費(元) | 包時上網(wǎng) 時間(h) | 超時費(元/min) |
A | 7 | 25 | 0.6 |
B | 10 | 50 | 0.8 |
設小明每月上網(wǎng)學習人工智能課程的時間為x小時,方案A,B的收費金額分別為yA元,yB元.
(1)當x≥50時,分別求出yA,yB與x之間的函數(shù)關系式;
(2)若小明3月份上該網(wǎng)站學習的時間為60小時,則他選擇哪種方式上網(wǎng)學習合算?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com