如圖,已知拋物線y=2x2﹣2與x軸交于A,B兩點(點A在點B的左側),與y軸交于點C.
(1)寫出以A,B,C為頂點的三角形面積;
(2)過點E(0,6)且與x軸平行的直線l1與拋物線相交于M、N兩點(點M在點N的左側),以MN為一邊,拋物線上的任一點P為另一頂點做平行四邊形,當平行四邊形的面積為8時,求出點P的坐標;
(3)過點D(m,0)(其中m>1)且與x軸垂直的直線l2上有一點Q(點Q在第一象限),使得以Q,D,B為頂點的三角形和以B,C,O為頂點的三角形相似,求線段QD的長(用含m的代數式表示).
(1)2;(2)(,8)或(,8)或(,4)或(,4);(3)2m-2或
解析試題分析:(1)在二次函數的解析式中,令y=0,求出x=±1,得到AB=2,令x=0時,求出y=-2,得到OC=2,然后根據三角形的面積公式即可求出△ABC的面積;
(2)先將y=6代入,求出x=±2,得到點M與點N的坐標,則MN=4,再由平行四邊形的面積公式得到MN邊上的高為2,則P點縱坐標為8或4.分兩種情況討論:①當P點縱坐標為8時,將y=8代入,求出x的值,得到點P的坐標;②當P點縱坐標為4時,將y=4代入,求出x的值,得到點P的坐標;
(3)由于∠QDB=∠BOC=90°,所以以Q,D,B為頂點的三角形和以B,C,O為頂點的三角形相似時,分兩種情況討論:①OB與BD邊是對應邊,②OB與QD邊是對應邊兩種情況,根據相似三角形對應邊成比例列式計算求出QD的長度即可.
試題解析:(1)∵,
∴當y=0時,2x2-2=0,x=±1,
∴點A的坐標為(-1,0),點B的坐標為(1,0),AB=2,
又當x=0時,y=-2,
∴點C的坐標為(0,-2),OC=2,
∴AB•OC×2×2=2;
(2)將y=6代入,
得,解得x=±2,
∴點M的坐標為(-2,6),點N的坐標為(2,6),MN=4.
∵平行四邊形的面積為8,
∴MN邊上的高為:8÷4=2,
∴P點縱坐標為6±2.
①當P點縱坐標為6+2=8時,,解得,
∴點P的坐標為(,8)或(,8);
②當P點縱坐標為6-2=4時,,解得,
∴點P的坐標為(,4)或(,4);
(3)∵點B的坐標為(1,0),點C的坐標為(0,-2),
∴OB=1,OC=2.
∵∠QDB=∠BOC=90°,
∴以Q,D,B為頂點的三角形和以B,C,O為頂點的三角形相似時,分兩種情況:
①OB與BD邊是對應邊時,△OBC∽△DBQ,
則,即,解得DQ=2(m-1)=2m-2,
②OB與QD邊是對應邊時,△OBC∽△DQB,
則,即,解得.
綜上所述,線段QD的長為2m-2或.
考點:二次函數的綜合題
科目:初中數學 來源: 題型:解答題
已知拋物線().
(1)求拋物線與軸的交點坐標;
(2)若拋物線與軸的兩個交點之間的距離為2,求的值;
(3)若一次函數的圖象與拋物線始終只有一個公共點,求一次函數的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,在平面直角坐標系xOy中,將拋物線C1:y=x2+3先向右平移1個單位,再向下平移7個單位得到拋物線C2。C2的圖象與x軸交于A、B兩點(點A在點B的左側)。
(1)求拋物線C2的解析式;
(2)若拋物線C2的對稱軸與x軸交于點C,與拋物線C2交于點D,與拋物線C1交于點E,連結AD、DB、BE、EA,請證明四邊形ADBE是菱形,并計算它的面積;
(3)若點F為對稱軸DE上任意一點,在拋物線C2上是否存在這樣的點G,使以O、B、F、G四點為頂點的四邊形是平行四邊形,如果存在,請求出點G的坐標,如果不存在,請說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,拋物線與x軸交于點A、B,且A點的坐標為(1,0),與y軸交于點C(0,1).
(1)求拋物線的解析式,并求出點B坐標;
(2)過點B作BD∥CA交拋物線于點D,連接BC、CA、AD,求四邊形ABCD的周長;(結果保留根號)
(3)在x軸上方的拋物線上是否存在點P,過點P作PE垂直于x軸,垂足為點E,使以B、P、E為頂點的三角形與△CBD相似?若存在請求出P點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,直線AB分別交y軸、x 軸于A、B兩點,OA=2,,拋物線過A、B兩點.
(1)求直線AB和這個拋物線的解析式;
(2)設拋物線的頂點為D,求△ABD的面積
(3)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個拋物線于N.求當t 取何值時,MN的長度l有最大值?最大值是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
某農戶計劃利用現有的一面墻(墻長8米),再修四面墻,建造如圖所示的長方體水池,培育不同品種的魚苗.他已備足可以修高為1.5m、長18m的墻的材料準備施工,設圖中與現有一面墻垂直的三面墻的長度都為xm,即AD=EF=BC=xm.(不考慮墻的厚度).
(1)若想水池的總容積為36m3,x應等于多少?
(2)求水池的總容積V與x的函數關系式,并直接寫出x的取值范圍;
(3)若想使水池的總容積V最大,x應為多少?最大容積是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,已知二次函數的圖象經過點A(6,0)、B(﹣2,0)和點C(0,﹣8).
(1)求該二次函數的解析式;
(2)設該二次函數圖象的頂點為M,若點K為x軸上的動點,當△KCM的周長最小時,點K的坐標為 ;
(3)連接AC,有兩動點P、Q同時從點O出發(fā),其中點P以每秒3個單位長度的速度沿折線OAC按O→A→C的路線運動,點Q以每秒8個單位長度的速度沿折線OCA按O→C→A的路線運動,當P、Q兩點相遇時,它們都停止運動,設P、Q同時從點O出發(fā)t秒時,△OPQ的面積為S.
①請問P、Q兩點在運動過程中,是否存在PQ∥OC?若存在,請求出此時t的值;若不存在,請說明理由;
②請求出S關于t的函數關系式,并寫出自變量t的取值范圍;
③設S0是②中函數S的最大值,直接寫出S0的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com