【題目】已知,如圖在直角坐標(biāo)系中,點Ay軸上,BCx軸于點C,點A關(guān)于直線OB的對稱點D恰好在BC上,點E與點O關(guān)于直線BC對稱,∠OBC=35°,則∠OED的度數(shù)為( 。

A.10°B.20°C.30°D.35°

【答案】B

【解析】

先根據(jù)平行線的性質(zhì)求出∠AOB的度數(shù),由直角三角形的性質(zhì)得出∠BOC的度數(shù),再根據(jù)點A關(guān)于直線OB的對稱點D恰好在BC上得出OB是線段AD的垂直平分線,故可得出∠BOD的度數(shù),進而得出∠DOC的度數(shù),由點E與點O關(guān)于直線BC對稱可知BCOE的垂直平分線,故可得出∠DOC=OED

解:連接OD,

BCx軸于點C,∠OBC=35°,

∴∠AOB=OBC=35°,∠BOC=90°-35°=55°

∵點A關(guān)于直線OB的對稱點D恰好在BC上,

OB是線段AD的垂直平分線,

∴∠BOD=AOB=35°

∴∠DOC=BOC-BOD=55°-35°=20°

∵點E與點O關(guān)于直線BC對稱,

BCOE的垂直平分線,

∴∠DOC=OED=20°

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△OAB是邊長為2的等邊三角形過點A的直線軸交于點E,

(1)求點E坐標(biāo)。

(2)求過A,O,E三點的拋物線表達式。

(3)若P是(2)中求出的拋物線AE段上的一動點(不與A、E重合),設(shè)四邊形OAPE的面積為S,求S的最大值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,點的內(nèi)部,,在上分別取點、,使的周長最短,則周長的最小值為(

A.4B.8C.16D.32

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,BABC,D在邊CB上,且DBDAAC

1)填空:如圖1,∠B   °,∠C   °;

2)如圖2,若M為線段BC上的點,過MMHAD,交AD的延長線于點H,分別交直線ABAC與點N、E

①求證:ANE是等腰三角形;

②線段BN、CE、CD之間的數(shù)量關(guān)系是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一把三角尺放在邊長為2的正方形ABCD(正方形四個內(nèi)角為90°,四邊都相等),并使它的直角頂點P在對角線AC上滑動,直角的一邊始終經(jīng)過點B,另一邊與射線DC交于點Q

探究:(1)當(dāng)點Q在邊CD 上時,線段PQ 與線段PB之間有怎樣的大小關(guān)系?試證明你觀察得到結(jié)論;

(2)當(dāng)點Q在邊CD 上時,如果四邊形 PBCQ 的面積為1,求AP長度;

(3)當(dāng)點P在線段AC 上滑動時,PCQ 是否可能成為等腰三角形?如果可能,指出所有能使△PCQ 成為等腰三角形的點Q的位置,并求出相應(yīng)的AP的長;如果不可能,試說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,△ABC繞點C順時針旋轉(zhuǎn)一定角度得到△DEC,點D恰好落在AB邊上,連接AE. 求:

(1)旋轉(zhuǎn)角的度數(shù);

(2)AE的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方程①,②,③,④為實數(shù)),⑤,⑥其中一定是一元二次方程的個數(shù)為( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形中,為正方形的外角的角平分線,點在線段上,過點于點,連接,過點于點,交射線于點

)如圖1,若點與點重合.

依題意補全圖1.

判斷的數(shù)量關(guān)系并加以證明.

)如圖2,若點恰好在線段上,正方形的邊長為,請寫出求長的思路(可以不寫出計算結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,CDAB邊上的高,AD8,CD4BD3.動點P從點A出發(fā),沿射線AB運動,速度為1個單位/秒,運動時間為t秒.

1)當(dāng)t為何值時,△PDC≌△BDC;

2)當(dāng)t為何值時,△PBC是等腰三角形?

查看答案和解析>>

同步練習(xí)冊答案