某花木場(chǎng)有一塊如等腰梯形ABCD的空地(如圖),各邊的中點(diǎn)分別是E、F、G、H,用籬笆圍成的四邊形EFGH場(chǎng)地的周長(zhǎng)為40cm,則對(duì)角線AC=   cm
20
∵等腰梯形的對(duì)角線相等,EF、HG、GF、EF均為梯形的中位線,∴EF=HG=GF=EF=AC.
又∵EF+HG+GF+EF=40cm,即2AC=40cm,則AC=20cm.對(duì)角線AC=20cm.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,平行四邊形中,E是BA延長(zhǎng)線上一點(diǎn),AB=AE,連結(jié)CE交AD于點(diǎn)F,若CF平分,則BC的長(zhǎng)為         

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,菱形中,,中點(diǎn),于點(diǎn),于點(diǎn),交于點(diǎn)
(1)求菱形的面積;
(2)求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,矩形ABCD中,AB>AD,AB=a,AN平分∠DAB,DM⊥AN于點(diǎn)M,CN⊥AN于點(diǎn)N.則DM+CN的值為(用含a的代數(shù)式表示)(    )
A.a(chǎn)B. C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中描出下列各點(diǎn)A(2,1),B(0,1),C(),D(6,),并將各點(diǎn)用線段一次連接構(gòu)成一個(gè)四邊形ABCD。

(1)四邊形ABCD時(shí)什么特殊的四邊形?
答:
(2)在四邊形ABCD內(nèi)找一點(diǎn)P,使得△APB、△BPC、△CPD、△APD都是等腰三角形,請(qǐng)寫出P點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平行四邊形ABCD中,∠BAD=32°.分別以BC、CD為邊向外作△BCE和△DCF,使BE=BC,DF=DC,∠EBC=∠CDF,延長(zhǎng)AB交邊EC于點(diǎn)H,點(diǎn)H在E、C兩點(diǎn)之間,連結(jié)AE、AF.
(1)求證:△ABE≌△FDA.
(2)當(dāng)AE⊥AF時(shí),求∠EBH的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

將一副三角尺如圖拼接:含30°角的三角尺(△ABC)的長(zhǎng)直角邊與含45°角的三角尺(△ACD)的斜邊恰好重合.已知AB=2,P是線段AC上的一個(gè)動(dòng)點(diǎn).

(1)當(dāng)點(diǎn)P運(yùn)動(dòng)到∠ABC的平分線上時(shí),連結(jié)DP,求DP的長(zhǎng);
(2)當(dāng)點(diǎn)P在運(yùn)動(dòng)過程中出現(xiàn)PD=BC時(shí),∠PDA=                  
(3)當(dāng)PC=   時(shí),以D,P,B,Q為頂點(diǎn)的平行四邊形的頂點(diǎn)Q恰好在邊BC上,此時(shí)□DPBQ的面積= 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如上圖,在一塊形狀為直角梯形的草坪中,修建了一條由的小路(、分別是、中點(diǎn)).極少數(shù)同學(xué)為了走“捷徑”,沿線段行走,破壞了草坪,實(shí)際上他們僅少走了________米。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知直角梯形ABCD中, AD∥BC,∠BCD=90°, BC =" CD=2AD" , E、F分別是BC、CD邊的中點(diǎn),連接BF、DE交于點(diǎn)P,連接CP并延長(zhǎng)交AB于點(diǎn)Q,連接AF,則下列結(jié)論不正確的是(   )
A. CP 平分∠BCD                  B. 四邊形 ABED 為平行四邊形
C. △ABF為等腰三角形             D. CQ將直角梯形ABCD分為面積相等的兩部分

查看答案和解析>>

同步練習(xí)冊(cè)答案