【題目】如圖,在平面直角坐標系中,拋物線交于點A.過點A軸的垂線,分別交兩條拋物線于點B、C(B在點A左側(cè),點C在點A右側(cè)),則線段BC的長為____

【答案】6

【解析】

設(shè)拋物線yax+12+b的對稱軸與線段BC交于點E,拋物線yax22+b+1的對稱軸與線段BC交于點F,由拋物線的對稱性可得BC2AE+AF),即可求出結(jié)論.

解:設(shè)拋物線yax+12+b的對稱軸與線段BC交于點E,拋物線yax22+b+1的對稱軸與線段BC交于點F,如圖所示.

由拋物線的對稱性,可知:BEAECFAF,

∵拋物線yax+12+b的對稱軸為直線x=﹣1,拋物線yax22+b+1的對稱軸為直線x2,

BCBE+AE+AF+CF2AE+AF)=2×[2﹣(﹣1]6

故答案為:6

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某攔河壩橫截面原設(shè)計方案為梯形ABCD,其中ADBC,∠ABC=72°,為了提高攔河壩的安全性,現(xiàn)將壩頂寬度水平縮短10m,壩底寬度水平增加4m,使∠EFC=45°,請你計算這個攔河大壩的高度.(參考數(shù)據(jù):sin72°≈,cos72°≈,tan72°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次綜合社會實踐活動中,小東同學從處出發(fā),要到地北偏東60°方向的處,他先沿正東方向走了2千米到達處,再沿北偏東15°方向走,恰能到達目的地,如圖所示,則兩地相距____千米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲,乙,丙三種作物,分別在山腳,山腰和山頂三個試驗田進行試驗,每個試驗田播種二十粒種子,農(nóng)業(yè)專家將每個試驗田成活的種子個數(shù)統(tǒng)計如條形統(tǒng)計圖,如圖所示,下面有四個推斷:

①甲種作物受環(huán)境影響最;②乙種作物平均成活率最高;

③丙種作物最適合播種在山腰;

④如果每種作物只能在一個地方播種,那么山腳,山腰和山頂分別播種甲,乙,丙三種作物能使得成活率最高.其中合理的是( 。

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y=mx2-2mx+2m≠0)與y軸交于點A,其對稱軸與x軸交于點B

1)求點A,B的坐標;

2)點C,Dx軸上(點C在點D的左側(cè)),且與點B的距離都為2,若該拋物線與線段CD有兩個公共點,結(jié)合函數(shù)的圖象,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】教材呈現(xiàn):下圖是華師版八年級上冊數(shù)學教材第94頁的部分內(nèi)容.

請根據(jù)教材中的分析,結(jié)合圖①,寫出“線段垂直平分線的性質(zhì)定理”完整的證明過程.

定理應(yīng)用:

1)如圖②,在中,直線分別是邊AB、BC、AC的垂直平分線.求證:直線交于點

2)如圖③,在中,,邊AB的垂直平分線交AC于點D、邊BC的垂直平分線交AC于點E.若,,則DE的長為___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線ykx+b經(jīng)過點A0,2),B(﹣4,0)和拋物線yx2

1)求直線的解析式;

2)將拋物線yx2沿著x軸向右平移,平移后的拋物線對稱軸左側(cè)部分與y軸交于點C,對稱軸右側(cè)部分拋物線與直線ykx+b交于點D,連接CD,當CDx軸時,求平移后得到的拋物線的解析式;

3)在(2)的條件下,平移后得到的拋物線的對稱軸與x軸交于點EP為該拋物線上一動點,過點P作拋物線對稱軸的垂線,垂足為Q,是否存在這樣的點P,使以點EP,Q為頂點的三角形與AOB相似?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我國古代的優(yōu)秀數(shù)學著作《九章算術(shù)》有一道“竹九節(jié)”問題,大意是說:現(xiàn)有﹣一根上細下粗共九節(jié)的竹子,自上而下從第2節(jié)開始,每一節(jié)與前一節(jié)的容積之差都相等,且最上面三節(jié)的容積共9升,最下面三節(jié)的容積共45升,求第五節(jié)的容積,及每一節(jié)與前一節(jié)的容積之差.

請解答上述問題.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解七、八年級學生對防溺水安全知識的掌握情況,從七、八年級各隨機抽取50名學生進行測試,并對成績(百分制)進行整理、描述和分析.部分信息如下:

a.七年級成績頻數(shù)分布直方圖:

b.七年級成績在這一組的是:70 72 74 75 76 76 77 77 77 78 79

c.七、八年級成績的平均數(shù)、中位數(shù)如下:

年級

平均數(shù)

中位數(shù)

76.9

m

79.2

79.5

根據(jù)以上信息,回答下列問題:

1)在這次測試中,七年級在80分以上(含80分)的有   人;

2)表中m的值為   ;

3)在這次測試中,七年級學生甲與八年級學生乙的成績都是78分,請判斷兩位學生在各自年級的排名誰更靠前,并說明理由;

4)該校七年級學生有400人,假設(shè)全部參加此次測試,請估計七年級成績超過平均數(shù)76.9分的人數(shù).

查看答案和解析>>

同步練習冊答案