【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點的坐標(biāo)分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).

①若△ABC經(jīng)過平移后得到△A1B1C1 , 已知點C1的坐標(biāo)為(4,0),寫出頂點A1 , B1的坐標(biāo);
②若△ABC和△A2B2C2關(guān)于原點O成中心對稱圖形,寫出△A2B2C2的各頂點的坐標(biāo);
③將△ABC繞著點O按順時針方向旋轉(zhuǎn)90°得到△A3B3C3 , 寫出△A3B3C3的各頂點的坐標(biāo).

【答案】解:①如圖,△A1B1C1為所作,
因為點C(﹣1,3)平移后的對應(yīng)點C1的坐標(biāo)為(4,0),
所以△ABC先向右平移5個單位,再向下平移3個單位得到△A1B1C1 ,
所以點A1的坐標(biāo)為(2,2),B1點的坐標(biāo)為(3,﹣2)
②因為△ABC和△A1B2C2關(guān)于原點O成中心對稱圖形,
所以A2(3,﹣5),B2(2,﹣1),C2(1,﹣3)
③如圖,△A2B3C3為所作,A3(5,3),B3(1,2),C3(3,1)

【解析】①利用點C和點C1的坐標(biāo)變化得到平移的方向與距離,然后利用此平移規(guī)律寫出頂點A1 , B1的坐標(biāo);②因為△ABC和△A1B2C2關(guān)于原點O成中心對稱圖形,所以A2(3,﹣5),B2(2,﹣1),C2(1,﹣3)根據(jù)關(guān)于原點對稱的點的坐標(biāo)特征求解;③利用網(wǎng)格和旋轉(zhuǎn)的性質(zhì)畫出△A2B3C3 , 然后寫出△A2B3C3的各頂點的坐標(biāo).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線ABDF,D+B=180°,

1)求證:DEBC

2)如果∠AMD=75°,求∠AGC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,動點P在平面直角坐標(biāo)系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2),,按這樣的運動規(guī)律,經(jīng)過第2017次運動后,動點P的坐標(biāo)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的有(

①絕對值等于本身的數(shù)是正數(shù);②將數(shù)60340精確到千位是③連接兩點的線段的長度就是兩點間的距離;④若AC=BC,則點C就是線段AB的中點.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,BC=AC=5,AB=8,CDAB邊的高,點Ax軸上,點By軸上,點C在第一象限,若A從原點出發(fā),沿x軸向右以每秒4個單位長的速度運動,則點B隨之沿y軸下滑,并帶動△ABC在平面內(nèi)滑動,設(shè)運動時間為t秒,當(dāng)B到達(dá)原點時停止運動.當(dāng)△ABC的邊與坐標(biāo)軸平行時,t_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CD是△ABC的中線,點E、F分別是AC、DC的中點,EF=1,則BD=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列四個圖形中,是軸對稱圖形,但不是中心對稱圖形的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形中,是軸對稱圖形但不是中心對稱圖形的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABC ,∠ABCACB的平分線交于點O,過點OEFBC,AB于點E,AC于點F.

(1)ABC=40°,∠ACB=60°,BOE+COF的度數(shù);

(2)AEF的周長為8 cm,BC=4 cm,ABC的周長.

查看答案和解析>>

同步練習(xí)冊答案