【題目】如圖,陽光下,小亮的身高如圖中線段AB所示,他在地面上的影子如圖中線段BC所示,線段DE表示旗桿的高,線段FG表示一堵高墻.

(1)請你在圖中畫出旗桿在同一時刻陽光照射下形成的影子;
(2)如果小亮的身高AB=1.6m,他的影子BC=2.4m,旗桿的高DE=15m,旗桿與高墻的距離EG=16m,請求出旗桿的影子落在墻上的長度.

【答案】
(1)解:如圖:線段MG和GE就表示旗桿在陽光下形成的影子


(2)解:過M作MN⊥DE于N,

設(shè)旗桿的影子落在墻上的長度為x,由題意得:△DMN∽△ACB,

又∵AB=1.6,BC=2.4,

DN=DE﹣NE=15﹣x

MN=EG=16

解得:x= ,

答:旗桿的影子落在墻上的長度為


【解析】(1)連接AC,過D點作AC的平行線即可;(2)過M作MN⊥DE于N,利用相似三角形列出比例式求出旗桿的高度即可.
【考點精析】利用相似三角形的應(yīng)用和平行投影對題目進行判斷即可得到答案,需要熟知測高:測量不能到達頂部的物體的高度,通常用“在同一時刻物高與影長成比例”的原理解決;測距:測量不能到達兩點間的舉例,常構(gòu)造相似三角形求解;太陽光線可以看成是平行光線,平行光線所形成的投影稱為平行投影;作物體的平行投影:由于平行投影的光線是平行的,而物體的頂端與影子的頂端確定的直線就是光線,故根據(jù)另一物體的頂端可作出其影子.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一根長為22cm的筷子,置于底面直徑為5cm,高為12cm的圓柱形水杯中,設(shè)筷子露在杯子外面的長度為hcm,則h的取值范圍是 ( ).

A. 9cmh≤10cm B. 10cmh≤11cm C. 12cmh≤13cm D. 8cmh≤9cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線PQMN,點A在直線PQ上,點C,D在直線MN上,連接AC,AD,∠PAC=50°,∠ADC=30°,AE平分PAD,CE平分ACD,AECE相交于點E

(1)求AEC的度數(shù);

(2)若將圖中的線段AD沿MN向右平移到A1D1如圖所示位置,此時A1E平分AA1D1

CE平分ACD1,A1ECE相交于E,∠PAC=50°,∠A1D1C=30°,求A1EC的度數(shù);

(3)若將圖中的線段AD沿MN向左平移到A1D1如圖所示位置,其他條件與(2)相同,求此時A1EC的度數(shù)(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,點A、B、C的坐標分別為(﹣1,3)、(﹣4,1)、(﹣2,1),將△ABC沿一確定方向平移得到△A1B1C1,點B的對應(yīng)點B1的坐標是(1,2),則點A1,C1的坐標分別是 ( 。

A. A1(4,4),C1(3,2) B. A1(3,3),C1(2,1)

C. A1(4,3),C1(2,3) D. A1(3,4),C1(2,2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一汽車在某一直線道路上行駛,該車離出發(fā)地的距離s(千米)和行駛時間t(小時)之間的函數(shù)關(guān)系如圖所示(折線ABCDE),根據(jù)圖中提供的信息,下列說法不正確的是(

A. 汽車在行駛途中停留了0.5小時

B. 汽車在行駛途中的平均速度為千米/小時

C. 汽車共行駛了240千米

D. 汽車自出發(fā)后3小時至4.5小時之間行駛的速度是80千米/小時

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABO的頂點A是雙曲線y1= 與直線y2=﹣x﹣(k+1)在第二象限的交點.AB⊥x軸于B,且SABO=

(1)求這兩個函數(shù)的解析式;
(2)求△AOC的面積;
(3)直接寫出使y1>y2成立的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為提高飲水質(zhì)量,越來越多的居民開始選購家用凈水器.一商家抓住商機,從廠家購進了AB兩種型號家用凈水器共160,A型號家用凈水器進價是150/B型號家用凈水器進價是350/,購進兩種型號的家用凈水器共用去36000

1)求AB兩種型號家用凈水器各購進了多少臺;

2)為使每臺B型號家用凈水器的毛利潤是A型號的2,且保證售完這160臺家用凈水器的毛利潤不低于11000,求每臺A型號家用凈水器的售價至少是多少元?(注毛利潤=售價﹣進價)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖所示,AB//CD,點EAD的延長線上,∠EDC與∠B互為補角.

(1)問AD,BC是否平行?請說明理由;

(2)如果∠EDC=72°,∠1=∠2=2∠CAB,求∠CAF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+2x+3與y軸交于點C,點D(0,1),點P是拋物線上的動點.若△PCD是以CD為底的等腰三角形,則點P的坐標為

查看答案和解析>>

同步練習冊答案