【題目】已知函數(shù)是關(guān)于的二次函數(shù),求:

求滿足條件的值;

當(dāng)拋物線開口向下時(shí),請寫出此時(shí)拋物線的頂點(diǎn)坐標(biāo);

為何值時(shí),拋物線有最小值?最小值是多少?當(dāng)為何值時(shí),的增大而增大?

【答案】 ,;拋物線的頂點(diǎn)坐標(biāo)為; ,最小值為,當(dāng)時(shí),隨著增大而增大.

【解析】

(1)由二次函數(shù)定義即可求解,注意二次項(xiàng)系數(shù)不能為零;

(2)依題意確定m值,再將一般式化為頂點(diǎn)式即可;

(3)圖像開口向上有最小值,據(jù)此確定m后寫出二次函數(shù)頂點(diǎn)式,進(jìn)而求解最小值,確定函數(shù)增減性.

由題意得:,

解得,

整理得,,

解得,,,

綜上所述,;

拋物線開口向下,

,

二次函數(shù)為,

拋物線的頂點(diǎn)坐標(biāo)為

拋物線有最小值,

,

,

二次函數(shù)為,

最小值為

當(dāng)時(shí),隨著增大而增大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,點(diǎn)EBC上,AE=AD,DF⊥AE,垂足為F.

(1)求證.DF=AB;

(2)若∠FDC=30°,且AB=4,求AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某企業(yè)接到一批產(chǎn)品的生產(chǎn)任務(wù),按要求必須在14天內(nèi)完成.已知每件產(chǎn)品的出廠價(jià)為60元.工人甲第x天生產(chǎn)的產(chǎn)品數(shù)量為y件,yx滿足如下關(guān)系:

(1)工人甲第幾天生產(chǎn)的產(chǎn)品數(shù)量為70件?

(2)設(shè)第x天生產(chǎn)的產(chǎn)品成本為P/件,P的函數(shù)圖象如圖.工人甲第x天創(chuàng)造的利潤為W元,求Wx的函數(shù)關(guān)系式,并求出第幾天時(shí)利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著地鐵和共享單車的發(fā)展,“地鐵單車”已成為很多市民出行的選擇張老師從學(xué)校站出發(fā),先乘坐地鐵到某一站出地鐵,再騎共享單車回家,設(shè)他出地鐵的站點(diǎn)與學(xué)校距離為單位:千米,乘坐地鐵的時(shí)間為單位分鐘,經(jīng)測量,得到如下數(shù)據(jù):

地鐵站

A

 B

 C

 D

 E

千米

6

 10

 

 15

 分鐘

9

12

a

 20

 b

根據(jù)表中數(shù)據(jù)的規(guī)律,直接寫出表格中a、b的值和關(guān)于x的函數(shù)表達(dá)式;

張老師騎單車的時(shí)間單位:分鐘也受x的影響,其關(guān)系可以用米描述,

若張老師出地鐵的站點(diǎn)與學(xué)校距離為14千米,請求出張老師從學(xué);氐郊宜璧臅r(shí)間;

若張老師準(zhǔn)備在離家較近的A,B,CD,E中的某一站出地鐵,請問:張老師應(yīng)選擇在哪一站出地鐵,才能使他從學(xué);氐郊宜璧臅r(shí)間最短?并求出最短時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABCDAD邊延長至點(diǎn)E,使DEAD,連接CE,FBC邊的中點(diǎn),連接FD

(1)求證:四邊形CEDF是平行四邊形;

(2)AB3AD4,∠A60°,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:直線yx+3x軸、y軸分別相于點(diǎn)A和點(diǎn)B,點(diǎn)C在線段AO上.

將△CBO沿BC折疊后,點(diǎn)O恰好落在AB邊上點(diǎn)D

1)求直線BC的解析式;

2)求點(diǎn)D的坐標(biāo);

3P為平面內(nèi)一動(dòng)點(diǎn),且以A、B、C、P為頂點(diǎn)的四邊形為平行四邊形,直接寫出點(diǎn)P坐標(biāo)   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解題

1)閱讀理解:如圖①,等邊內(nèi)有一點(diǎn),若點(diǎn)到頂點(diǎn),,的距離分別為34,5,求的大小.

思路點(diǎn)撥:考慮到,,不在一個(gè)三角形中,采用轉(zhuǎn)化與化歸的數(shù)學(xué)思想,可以將繞頂點(diǎn)逆時(shí)針旋轉(zhuǎn)處,此時(shí),這樣,就可以利用全等三角形知識(shí),結(jié)合已知條件,將三條線段的長度轉(zhuǎn)化到一個(gè)三角形中,從而求出的度數(shù).請你寫出完整的解題過程.

2)變式拓展:請你利用第(1)題的解答思想方法,解答下面問題:

已知如圖②,中,,,上的點(diǎn)且,,求的大小.

3)能力提升:如圖③,在中,,,點(diǎn)內(nèi)一點(diǎn),連接,,且,請直接寫出的值,即______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,將直角三角形的直角頂點(diǎn)放在點(diǎn)處,兩直角邊與坐標(biāo)軸交于如圖所示的點(diǎn)和點(diǎn),則的值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC內(nèi)接于⊙O,過點(diǎn)A作直線EF.

(1)如圖①,AB是直徑,要使EF是⊙O的切線,還須添加一個(gè)條件是(只需寫出三種情況).

(ī)   (īī)   (īīī)   

(2)如圖(2),若AB為非直徑的弦,∠CAE=∠B,則EF是⊙O的切線嗎?為什么?

查看答案和解析>>

同步練習(xí)冊答案