【題目】如圖所示,某公司有三個(gè)住宅區(qū),A、B、C各區(qū)分別住有職工30人,15人,10人,且這三點(diǎn)在一條大道上(AB,C三點(diǎn)共線),已知AB100米,BC200米.為了方便職工上下班,該公司的接送車打算在此間只設(shè)一個(gè)?奎c(diǎn),為使所有的人步行到?奎c(diǎn)的路程之和最小,那么該?奎c(diǎn)的位置應(yīng)設(shè)在(  )

A. 點(diǎn)AB. 點(diǎn)BC. A,B之間D. BC之間

【答案】A

【解析】

此題為數(shù)學(xué)知識(shí)的應(yīng)用,由題意設(shè)一個(gè)?奎c(diǎn),為使所有的人步行到?奎c(diǎn)的路程之和最小,肯定要盡量縮短兩地之間的里程,就用到兩點(diǎn)間線段最短定理.

解:①以點(diǎn)A為?奎c(diǎn),則所有人的路程的和=15×100+10×3004500(米),

②以點(diǎn)B為停靠點(diǎn),則所有人的路程的和=30×100+10×2005000(米),

③以點(diǎn)C為?奎c(diǎn),則所有人的路程的和=30×300+15×20012000(米),

④當(dāng)在AB之間?繒r(shí),設(shè)?奎c(diǎn)到A的距離是m,則(0m100),則所有人的路程的和是:30m+15100m+10300m)=4500+5m4500

⑤當(dāng)在BC之間?繒r(shí),設(shè)?奎c(diǎn)到B的距離為n,則(0n200),則總路程為30100+n+15n+10200n)=5000+35n4500

∴該?奎c(diǎn)的位置應(yīng)設(shè)在點(diǎn)A;

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知矩形AOCB的頂點(diǎn)O、A的坐標(biāo)分別是(00)、(0,a),且滿足 點(diǎn)DAB上一點(diǎn), MN垂直平分OD,分別交ABOD,OC于點(diǎn)M,E,N,連接OM,DN

1)填空:a = ;

2)求證:四邊形MOND是菱形;

3)若FOA的中點(diǎn),連接EF,且滿足EF+OE=9,求四邊形MOND的周長和面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市在招商引資期間,把已經(jīng)破產(chǎn)的油泵廠出租給外地某投資商,該投資商為了減少固定資產(chǎn)投資,將原來400平方米的正方形場地建成300平方米的長方形場地,并且長、寬的比為5:3,并且把原來的正方形鐵柵欄圍墻全部利用,圍成新場地的長方形圍墻,請問這些鐵柵欄是否夠用?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知方程的兩個(gè)解是

(1)求、的值;

(2)用含有的代數(shù)式表示

(3)若是不小于的負(fù)數(shù),求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個(gè)古代車輪的碎片,小明為求其外圓半徑,連接外圓上的兩點(diǎn)A、B,并使AB與車輪內(nèi)圓相切于點(diǎn)D,半徑為OC⊥AB交外圓于點(diǎn)C.測得CD=10cm,AB=60cm,則這個(gè)車輪的外圓半徑是( )

A.10cm
B.30cm
C.60cm
D.50cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副直角三角板按如圖1 擺放在直線AD 上(直角三角板OBC 和直角三角板MON,∠OBC=90°,∠BOC=45°,∠MON=90°,∠MNO=30°),保持三角板OBC 不動(dòng),將三角板MON 繞點(diǎn)O 以每秒8°的速度順時(shí)針方向旋轉(zhuǎn)t 秒.

(1)如圖2,當(dāng)t=   秒時(shí),OM 平分∠AOC,此時(shí)∠NOC﹣∠AOM= ;

(2)繼續(xù)旋轉(zhuǎn)三角板MON,如圖3,使得OM、ON 同時(shí)在直線OC 的右側(cè),猜想∠NOC與∠AOM 有怎樣的數(shù)量關(guān)系?并說明理由(數(shù)量關(guān)系中不能含t);

(3)直線AD 的位置不變,若在三角板MON 開始順時(shí)針旋轉(zhuǎn)的同時(shí),另一個(gè)三角板OBC也繞點(diǎn)O 以每秒2°的速度順時(shí)針旋轉(zhuǎn),當(dāng)OM 旋轉(zhuǎn)至射線OD 上時(shí),兩個(gè)三角板同時(shí)停止運(yùn)動(dòng).

①當(dāng)t= 秒時(shí),∠MOC=15°;

②請直接寫出在旋轉(zhuǎn)過程中,∠NOC 與∠AOM 的數(shù)量關(guān)系(數(shù)量關(guān)系中不能含t).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△AOB中,∠O=90°,AO=8cm,BO=6cm,點(diǎn)C從A點(diǎn)出發(fā),在邊AO上以4cm/s的速度向O點(diǎn)運(yùn)動(dòng),與此同時(shí),點(diǎn)D從點(diǎn)B出發(fā),在邊BO上以3cm/s的速度向O點(diǎn)運(yùn)動(dòng),過OC的中點(diǎn)E作CD的垂線EF,則當(dāng)點(diǎn)C運(yùn)動(dòng)了 s時(shí),以C點(diǎn)為圓心,2cm為半徑的圓與直線EF相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】七年級(jí)學(xué)生小聰和小明完成了數(shù)學(xué)實(shí)驗(yàn)《鐘面上的數(shù)學(xué)》之后,自制了一個(gè)模擬鐘面,如圖所示,O為模擬鐘面圓心,M、O、N在一條直線上,指針OA、OB分別從OM、ON出發(fā)繞點(diǎn)O轉(zhuǎn)動(dòng),OA運(yùn)動(dòng)速度為每秒15°,OB運(yùn)動(dòng)速度為每秒5°,當(dāng)一根指針與起始位置重合時(shí),運(yùn)動(dòng)停止,設(shè)轉(zhuǎn)動(dòng)的時(shí)間為t秒,請你試著解決他們提出的下列問題:

(1)OA順時(shí)針轉(zhuǎn)動(dòng),OB逆時(shí)針轉(zhuǎn)動(dòng),t=   秒時(shí),OAOB第一次重合;

(2)若它們同時(shí)順時(shí)針轉(zhuǎn)動(dòng),

當(dāng) t=2秒時(shí),∠AOB=   °;

當(dāng)t為何值時(shí),OAOB第一次重合?

當(dāng)t為何值時(shí),∠AOB=30°?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料,并回答問題

如圖,有一根木棒 MN 放置在數(shù)軸上,它的兩端 M、N 分別落在點(diǎn) A、B.將木 棒在數(shù)軸上水平移動(dòng),當(dāng)點(diǎn) M 移動(dòng)到點(diǎn) B 時(shí),點(diǎn) N 所對應(yīng)的數(shù)為 20,當(dāng)點(diǎn) N 移動(dòng)到點(diǎn) A 時(shí),點(diǎn) M 所對應(yīng)的數(shù)為 5(單位:cm

由此可得,木棒長為 cm借助上述方法解決問題:

一天,美羊羊去問村長爺爺?shù)哪挲g,村長爺爺說:我若是你現(xiàn)在這么大,你還 40 年才出生呢,你若是我現(xiàn)在這么大我已經(jīng)是老壽星了,116 歲了,哈哈!美羊羊納悶,村長爺爺?shù)降资嵌嗌贇q? 請你畫出示意圖,求出村長爺爺和美羊羊現(xiàn)在的年齡,并說明解題思路.

查看答案和解析>>

同步練習(xí)冊答案