【題目】已知二次函數(shù)y1=x2+mx+n的圖象經(jīng)過點P(﹣3,1),對稱軸是經(jīng)過(﹣1,0)且平行于y軸的直線.
(1)求m,n的值,
(2)如圖,一次函數(shù)y2=kx+b的圖象經(jīng)過點P,與x軸相交于點A,與二次函數(shù)的圖象相交于另一點B,若點B與點M(﹣4,6)關(guān)于拋物線對稱軸對稱,求一次函數(shù)的表達式.
(3)根據(jù)函數(shù)圖象直接寫出y1>y2時x的取值范圍.
【答案】(1)2,;(2)y=x+4;(3)x<﹣3或x>2.
【解析】
(1)將點P(-3,1)代入二次函數(shù)解析式得出3m﹣n=8,然后根據(jù)對稱軸過點(-1,0)得出對稱軸為x=-1,據(jù)此求出m的值,然后進一步求出n的值即可;
(2)根據(jù)一次函數(shù)經(jīng)過點P(﹣3,1),得出1=﹣3k+b,且點B與點M(﹣4,6)關(guān)于x=﹣1對稱,所以B(2,6),所以6=2k+b,最后求出k與b的值即可;
(3)y1>y2,則說明 y1的函數(shù)圖像在y2函數(shù)圖像上方,據(jù)此根據(jù)圖像直接寫出范圍即可.
(1)由二次函數(shù)經(jīng)過點P(﹣3,1),
∴1=9﹣3m+n,
∴3m﹣n=8,
又∵對稱軸是經(jīng)過(﹣1,0)且平行于y軸的直線,
∴對稱軸為x=﹣1,
∴﹣=﹣1,
∴m=2,
∴n=﹣2;
(2)∵一次函數(shù)經(jīng)過點P(﹣3,1),
∴1=﹣3k+b,
∵點B與點M(﹣4,6)關(guān)于x=﹣1對稱,
∴B(2,6),
∴6=2k+b,
∴k=1,b=4,
∴一次函數(shù)解析式為y=x+4;
(3)由圖象可知,x<﹣3或x>2時,y1>y2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2011貴州安順,16,4分)如圖,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按圖中所示方法將△BCD沿BD折疊,使點C落在AB邊的C′點,那么△ADC′的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某單位要建一個面積為48 m2的小倉庫,小倉庫有一邊靠墻(墻長10m),并在與墻平行的一邊開一道寬1 m的門,現(xiàn)有能圍成19 m的木板,求小倉庫的長與寬?
(注意:倉庫靠墻的那一邊不能超過墻長).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明將小球沿地面成一定角度的方向擊出,在不考慮空氣阻力的條件下,小球的飛行高度y(m)與它的飛行時間x(s)滿足二次函數(shù)關(guān)系,y與x的幾組對應(yīng)值如表所示:
(1)求y關(guān)于x的函數(shù)解析式(不要求寫x的取值范圍);
(2)問:小球的飛行高度能否達到20.5m?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市茶葉專賣店銷售某品牌茶葉,其進價為每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每降低 10 元,則平均每周的銷售量可增加 40 千克,若該專賣店銷售這種品牌茶葉要想平均每周獲利 41600 元,請回答:
(1)每千克茶葉應(yīng)降價多少元?
(2)在平均每周獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應(yīng)按原售價的 幾折出售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市去年成功舉辦2018郴州國際休閑旅游文化節(jié),獲評“全國森林旅游示范市”.某市有A,B,C,D,E五個景區(qū)很受游客喜愛.一旅行社對某小區(qū)居民在暑假期間去以上五個景區(qū)旅游(只選一個景區(qū))的意向做了一次隨機調(diào)查統(tǒng)計,并根據(jù)這個統(tǒng)計結(jié)果制作了如下兩幅不完整的統(tǒng)計圖:
(1)該小區(qū)居民在這次隨機調(diào)查中被調(diào)查到的人數(shù)是 人, ,并補全條形統(tǒng)計圖;
(2)若該小區(qū)有居民1200人,試估計去B地旅游的居民約有多少人?
(3)小軍同學(xué)已去過E地旅游,暑假期間計劃與父母從A,B,C,D四個景區(qū)中,任選兩個去旅游,求選到A,C兩個景區(qū)的概率.(要求畫樹狀圖或列表求概率)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、P、B、C是⊙O上的四個點,∠APC=∠CPB=60°.
(1)求證:PA+PB=PC;
(2)若BC=,點P是劣弧AB上一動點(異于A、B),PA、PB是關(guān)于x的一元二次方程x2﹣mx+n=0的兩根,求m的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線經(jīng)過點,、,,其中、是方程的兩根,且,過點的直線與拋物線只有一個公共點
(1)求、兩點的坐標(biāo);
(2)求直線的解析式;
(3)如圖2,點是線段上的動點,若過點作軸的平行線與直線相交于點,與拋物線相交于點,過點作的平行線與直線相交于點,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com