【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,則下列結(jié)論中正確的是( 。
A.a>0
B.當(dāng)x>1時,y隨x的增大而增大
C.c<0
D.3是方程ax2+bx+c=0的一個根
【答案】D
【解析】解答∵拋物線開口向下,∴a<0,故A選項錯誤;
∵拋物線與y軸的正半軸相交,∴c>0,故C選項錯誤;
∵對稱軸x=1,∴當(dāng)x>1時,y隨x的增大而減。还蔅選項錯誤;
∵對稱軸x=1,∴另一個根為1+2=3,故D選項正確.
根據(jù)圖象可得出a<0,c>0,對稱軸x=1,在對稱軸的右側(cè),y隨x的增大而減。桓鶕(jù)拋物線的對稱性另一個交點到x=1的距離與-1到x=1的距離相等,得出另一個根.
【考點精析】利用二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系和拋物線與坐標(biāo)軸的交點對題目進行判斷即可得到答案,需要熟知二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關(guān):對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標(biāo):(0,c);一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當(dāng)b2-4ac>0時,圖像與x軸有兩個交點;當(dāng)b2-4ac=0時,圖像與x軸有一個交點;當(dāng)b2-4ac<0時,圖像與x軸沒有交點.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道對于一個圖形,通過不同的方法計算圖形的面積可以得到一個數(shù)學(xué)等式.
例如:由圖1可得到(a+b)=a+2ab+b.
圖1 圖2 圖3
(1)寫出由圖2所表示的數(shù)學(xué)等式:_____________________;寫出由圖3所表示的數(shù)學(xué)等式:_____________________;
(2)利用上述結(jié)論,解決下面問題:已知a+b+c=11,bc+ac+ab=38,求a+b+c的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=(m2+m) .
(1)當(dāng)函數(shù)是二次函數(shù)時,求m的值;
(2)當(dāng)函數(shù)是一次函數(shù)時,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與x軸的一個交點A(1,0),對稱軸是x=-1,則該拋物線與x軸的另一交點坐標(biāo)是( )
A.(-3,0)
B.(-2,0)
C.x=-3
D.x=-2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx的圖象如圖,若一元二次方程ax2+bx+m=0有實數(shù)根,則m的最大值為( )
A.-3
B.3
C.-6
D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一元二次方程ax2+bx+c=0(a>0)的兩個實數(shù)根x1 , x2滿足x1+x2=4和x1x2=3,那么二次函數(shù)ax2+bx+c(a>0)的圖象有可能是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:用2輛A型車和1輛B型車裝滿貨物一次可運貨10噸;用1輛A型車和2輛B型車裝滿貨物一次可運貨11噸.某物流公司現(xiàn)有31噸貨物,計劃同時租用A型車輛,B型車輛,一次運完,且恰好每輛車都裝滿貨物. 根據(jù)以上信息,解答下列問題:
(1)1輛A型車和1輛B型車都裝滿貨物一次可分別運貨多少噸?
(2)請你幫該物流公司設(shè)計租車方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)在正是草莓熱銷的季節(jié),某水果零售商店分兩批次從批發(fā)市場共購進草莓40箱,已知第一、二次進貨價分別為每箱50元、40元,且第二次比第一次多付款700元.
(1)設(shè)第一、二次購進草莓的箱數(shù)分別為a箱、b箱,求a,b的值;
(2)若商店對這40箱草莓先按每箱60元銷售了x箱,其余的按每箱35元全部售完.
①求商店銷售完全部草莓所獲利潤y(元)與x(箱)之間的函數(shù)關(guān)系式;
②當(dāng)x的值至少為多少時,商店才不會虧本.(注:按整箱出售,利潤=銷售總收入-進貨總成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為增強學(xué)生體質(zhì),各學(xué)校普遍開展了陽光體育活動,某校為了解全校1000名學(xué)生每周課外體育活動時間的情況,隨機調(diào)查了其中的50名學(xué)生,對這50名學(xué)生每周課外體育活動時間x(單位:小時)進行了統(tǒng)計.根據(jù)所得數(shù)據(jù)繪制了一幅不完整的統(tǒng)計圖,并知道每周課外體育活動時間在6≤x<8小時的學(xué)生人數(shù)占24%.根據(jù)以上信息及統(tǒng)計圖解答下列問題:
(1)本次調(diào)查屬于調(diào)查,樣本容量是;
(2)請補全頻數(shù)分布直方圖中空缺的部分;
(3)求這50名學(xué)生每周課外體育活動時間的平均數(shù);
(4)估計全校學(xué)生每周課外體育活動時間不少于6小時的人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com