【題目】如圖,拋物線與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn)連接點(diǎn)是第一象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn),點(diǎn)的橫坐標(biāo)為,過(guò)點(diǎn)作軸,垂足為點(diǎn)交于點(diǎn)過(guò)點(diǎn)作交軸于點(diǎn),交于點(diǎn).
(1)求三點(diǎn)的坐標(biāo);
(2)試探究在點(diǎn)運(yùn)動(dòng)過(guò)程中,是否存在這樣的點(diǎn)使得以點(diǎn)為頂點(diǎn)的三角形是等腰三角形,若存在,請(qǐng)求出此時(shí)點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)m是點(diǎn)的橫坐標(biāo),請(qǐng)用含的代數(shù)式表示線段的長(zhǎng),并求出為何值時(shí)有最大值.
【答案】(1);(2)存在滿足條件的點(diǎn)坐標(biāo)為和;(3)時(shí),有最大值.
【解析】
(1)解方程得,計(jì)算自變量為0時(shí)的二次函數(shù)值得C點(diǎn)坐標(biāo);
(2)利用勾股定理計(jì)算出,利用待定系數(shù)法可求得直線關(guān)系式為則可設(shè)為,,討論:當(dāng)時(shí),;當(dāng)時(shí),有;當(dāng)時(shí),有然后分別解方程求出即可得到對(duì)應(yīng)點(diǎn)P的坐標(biāo);
(3)過(guò)點(diǎn)作于點(diǎn),由知是等腰直角三角形,可判斷為等腰直角三角形,則再證明得到,所以,于是得到,設(shè),,則利用得到,然后利用二次函數(shù)的性質(zhì)解決問(wèn)題即可.
解:當(dāng)時(shí),有
解得,
所以
當(dāng)時(shí),有
所以.
存在.
由(1)易知,,
直線關(guān)系式為
設(shè)為,,
則①當(dāng)時(shí),
有
解得(不合,舍去),
此時(shí)點(diǎn)為
②當(dāng)時(shí),有
解得(不合,舍去),
此時(shí)點(diǎn)為
③當(dāng)時(shí),有
解得(不合,舍去),
綜上所述,滿足條件的點(diǎn)坐標(biāo)為和.
過(guò)點(diǎn)作于點(diǎn),如圖,
則軸,
由知是等腰直角三角形,
,
為等腰直角三角形
,
又,
即
,
設(shè),,
則
,
,
有最大值,
時(shí),有最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面上有且只有4個(gè)點(diǎn),這4個(gè)點(diǎn)中有一個(gè)獨(dú)特的性質(zhì):連結(jié)每?jī)牲c(diǎn)可得到6條線段,這6條線段有且只有兩種長(zhǎng)度.我們把這四個(gè)點(diǎn)稱(chēng)作準(zhǔn)等距點(diǎn).例如正方形ABCD的四個(gè)頂點(diǎn)(如圖1),有AB=BC=CD=DA,AC=BD.其實(shí)滿足這樣性質(zhì)的圖形有很多,如圖2中A、B、C、O四個(gè)點(diǎn),滿足AB=BC=CA,OA=OB=OC;如圖3中A、B、C、O四個(gè)點(diǎn),滿足OA=OB=OC=BC,AB=AC.
(1)如圖,若等腰梯形ABCD的四個(gè)頂點(diǎn)是準(zhǔn)等距點(diǎn),且AD∥BC.
①寫(xiě)出相等的線段(不再添加字母);
②求∠BCD的度數(shù).
(2)請(qǐng)?jiān)佼?huà)出一個(gè)四邊形,使它的四個(gè)頂點(diǎn)為準(zhǔn)等距點(diǎn),并寫(xiě)出相等的線段.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,BC是⊙O的直徑,OE⊥BC交AB于點(diǎn)E,若BE=2AE,則∠ADC =_________°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣2x﹣3經(jīng)過(guò)點(diǎn)A(﹣2,a),與x軸相交于B、C兩點(diǎn)(B點(diǎn)在C點(diǎn)左側(cè)).
(1)求a的值及B、C兩點(diǎn)坐標(biāo);
(2)點(diǎn)D在拋物線的對(duì)稱(chēng)軸上,且位于x軸的上方,將△BCD沿直線BD翻折得到△BD,若點(diǎn)恰好落在拋物線的對(duì)稱(chēng)軸上,求點(diǎn)和點(diǎn)D的坐標(biāo);
(3)設(shè)P(m,-3)是該拋物線上一點(diǎn),點(diǎn)Q為拋物線的頂點(diǎn),在x軸、y軸分別找點(diǎn)M、N,使四邊形MNQP的周長(zhǎng)最小,請(qǐng)求出點(diǎn)M、N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知頂點(diǎn)為的拋物線過(guò)點(diǎn),交軸于兩點(diǎn),交軸于點(diǎn),點(diǎn)是拋物線上一動(dòng)點(diǎn).
求拋物線的解析式;
當(dāng)點(diǎn)在直線上方時(shí),求面積的最大值,并求出此時(shí)點(diǎn)的坐標(biāo);
過(guò)點(diǎn)作直線的垂線,垂足為,若將沿翻折點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn).是否存在點(diǎn),使恰好落在軸上?若存在,求出點(diǎn)的坐標(biāo):若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,平分交于點(diǎn),是上一點(diǎn),經(jīng)過(guò),兩點(diǎn)的交于點(diǎn),連接,作的平分線交于點(diǎn),連接.
(1)求證:是的切線;
(2)若,,求線段的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)P在BC上.
(1)求作:△PCD,使點(diǎn)D在AC上,且△PCD∽△ABP;(要求:尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法)
(2)在(1)的條件下,若∠APC=2∠ABC,求證:PD//AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸交于點(diǎn)和點(diǎn),與軸交于點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為.有一寬度為1,長(zhǎng)度足夠長(zhǎng)的矩形(陰影部分)沿軸方向平移,與軸平行的一組對(duì)邊交拋物線于點(diǎn)和點(diǎn),交直線于點(diǎn)和點(diǎn),交軸于點(diǎn)和點(diǎn).
(1)求拋物線的解析式及點(diǎn)的坐標(biāo);
(2)當(dāng)點(diǎn)和都在線段上時(shí),連接,如果,求點(diǎn)的坐標(biāo);
(3)在矩形的平移過(guò)程中,是否存在以點(diǎn),,,為頂點(diǎn)的四邊形是平行四邊形,若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市某特產(chǎn)專(zhuān)賣(mài)店銷(xiāo)售一種蜜棗,每千克的進(jìn)價(jià)為10元,銷(xiāo)售過(guò)程中發(fā)現(xiàn),每天銷(xiāo)量與銷(xiāo)售單價(jià)x(元)之間關(guān)系可以近似地看作一次函數(shù).(利潤(rùn)=售價(jià)-進(jìn)價(jià))
(1)寫(xiě)出每天的利潤(rùn)w(元)與銷(xiāo)售單價(jià)x(元)之間函數(shù)解析式;
(2)當(dāng)銷(xiāo)售單價(jià)定為多少元時(shí),這種蜜棗每天能夠獲得最大利潤(rùn)?最大利潤(rùn)是多少元?
(3)物價(jià)部門(mén)規(guī)定,這種蜜棗的銷(xiāo)售單價(jià)不得高于30元.若商店想要這種蜜棗每天獲得300元的利潤(rùn),則銷(xiāo)售單價(jià)應(yīng)定為多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com