【題目】一座隧道的截面由拋物線和長方形構(gòu)成,長方形的長為8m,寬為2m,隧道最高點P位于AB的中央且距地面6m,建立如圖所示的坐標(biāo)系:
(1)求拋物線的解析式;
(2)一輛貨車高4m,寬2m,能否從該隧道內(nèi)通過,為什么?
(3)如果隧道內(nèi)設(shè)雙行道,那么這輛貨車是否可以順利通過,為什么?
【答案】
(1)解:由題意可知拋物線的頂點坐標(biāo)(4,6),
設(shè)拋物線的方程為y=a(x﹣4)2+6,
又因為點A(0,2)在拋物線上,
所以有2=a(0﹣4)2+6.
所以a=﹣ .
因此有:y=﹣ +6
(2)解:令y=4,則有4=﹣ +6,
解得x1=4+2 ,x2=4﹣2 ,
|x1﹣x2|=4 >2,
∴貨車可以通過
(3)解:由(2)可知 |x1﹣x2|=2 >2,
∴貨車可以通過
【解析】(1)設(shè)出拋物線的解析式,根據(jù)拋物線頂點坐標(biāo),代入解析式;(2)令y=4,解出x與2作比較;(3)隧道內(nèi)設(shè)雙行道后,求出橫坐標(biāo)與2作比較.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的邊長為,點在邊上,且,將沿對折至,延長交邊于點,連接、,則下列結(jié)論:①≌;②;③∥;④與的面積相等;⑤,其中正確的個數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1)﹣22× +|1﹣ |+6sin45°+1
(2)3tan30°﹣2tan45°+2sin60°+4cos60°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是正三角形ABC內(nèi)的一點,且PA=6,PB=8,PC=10.若將△PAC繞點A逆時針旋轉(zhuǎn)后,得到△P′AB.
(1)求點P與點P′之間的距離;
(2)求∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABC是等邊三角形,點D是線段AC上的一動點,E在BC的延長線上,且BD=DE.
(1)如圖,若點D為線段AC的中點,求證:AD=CE;
(2)如圖,若點D為線段AC上任意一點,求證:AD=CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線AB交y軸于A點,交X軸于B點,A(0,6),B(6,0).點D是線段BO上一點,BN⊥AD交AD的延長線于點N.
(1)如圖,若OM∥BN交AD于點M.點O作0G⊥BN,交BN的延長線于點G,求證:AM=BG
(2)如圖,若∠ADO=67.5°,OM∥BN交AD于點M,交AB于點Q,求的值.
(3)如圖,若OC∥AB交BN的延長線于點C.請證明:∠CDN+2∠BDN=180°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c經(jīng)過A(﹣1,0)、B(3,0)、C(0,3)三點,直線l是拋物線的對稱軸.
(1)求拋物線的函數(shù)關(guān)系式;
(2)設(shè)點P是直線l上的一個動點,當(dāng)△PAC的周長最小時,求點P的坐標(biāo);
(3)在直線l上是否存在點M,使△MAC為等腰三角形?若存在,直接寫出所有符合條件的點M的坐標(biāo);若不存在,請說明理由.
(4)若拋物線頂點為D,點Q為直線AC上一動點,當(dāng)△DOQ的周長最小時,求點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長度為1個單位長度的小正方形組成的正方形中,點A、B、C在小正方形的頂點上.
在圖中畫出與關(guān)于直線l成軸對稱的;
三角形ABC的面積為______;
以AC為邊作與全等的三角形,則可作出______個三角形與全等;
在直線l上找一點P,使的長最短.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖形都是由面積為1的正方形按一定的規(guī)律組成,其中,第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的正方形有5個,第(3)個圖形中面積為1的正方形有9個,按此規(guī)律,則第(n)個圖形中面積為1的正方形的個數(shù)為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com