【題目】x=2是方程4x+2m-14=0的解,則m的值為( )

A. 10 B. 4 C. 3 D. 3

【答案】C

【解析】

x=2代入已知方程,得到m的新方程,通過解新方程求得m的值.

解:把x=2代入4x+2m-14=0,得
4×2+2m-14=0,
解得m=3
故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在直線跑道上同起點(diǎn)、同終點(diǎn)、同方向勻速跑步500米,先到終點(diǎn)的人原地休息.已知甲先出發(fā)2秒.在跑步過程中,甲、乙兩人的距離y(米)與乙出發(fā)的時(shí)間t(秒)之間的關(guān)系如圖所示,給出以下結(jié)論:①a=8;②b=92;③c=123.其中正確的是(  )
A.①②③
B.①②
C.①③
D.②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若a、b、c都是有理數(shù),那么2a﹣3b+c的相反數(shù)是(
A.3b﹣2a﹣c
B.﹣3b﹣2a+c
C.3b﹣2a+c
D.3b+2a﹣c

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過O點(diǎn)作射線OC,使∠AOC:∠BOC=1:2,將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.

(1)將圖1中的三角板繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)至圖2的位置,使得ON落在射線OB上,此時(shí)三角板旋轉(zhuǎn)的角度為度;
(2)繼續(xù)將圖2中的三角板繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)至圖3的位置,使得ON在∠AOC的內(nèi)部.試探究∠AOM與∠NOC之間滿足什么等量關(guān)系,并說明理由;
(3)在上述直角三角板從圖1逆時(shí)針旋轉(zhuǎn)到圖3的位置的過程中,若三角板繞點(diǎn)O按15°每秒的速度旋轉(zhuǎn),當(dāng)直角三角板的直角邊ON所在直線恰好平分∠AOC時(shí),求此時(shí)三角板繞點(diǎn)O的運(yùn)動(dòng)時(shí)間t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)賓館有二人間、三人間、四人間三種客房供游客租住,某旅行團(tuán)25人準(zhǔn)備同時(shí)租用這三種客房共9間,如果每個(gè)房間都住滿,則租房方案共有( 。
A.4種
B.3種
C.2種
D.1種

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某步行街?jǐn)[放有若干盆甲、乙、丙三種造型的盆景.甲種盆景由15朵紅花、24朵黃花和25朵紫花搭配而成,乙種盆景由10朵紅花和12朵黃花搭配而成,丙種盆景由10朵紅花、18朵黃花和25朵紫花搭配而成.這些盆景一共用了2900朵紅花,3750朵紫花,求黃花一共用了多少朵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某家電生產(chǎn)企業(yè)根據(jù)市場(chǎng)調(diào)查分析,決定調(diào)整產(chǎn)品生產(chǎn)方案,準(zhǔn)備每周(按120個(gè)工時(shí)計(jì)算)生產(chǎn)空調(diào)器、彩電、冰箱共360臺(tái),且冰箱至少生產(chǎn)60臺(tái),已知生產(chǎn)這些家電產(chǎn)品每臺(tái)所需工時(shí)和每臺(tái)產(chǎn)值如下表:

家電名稱

空調(diào)

彩電

冰箱

工 時(shí)

產(chǎn)值(千元)

4

3

2

問每周應(yīng)生產(chǎn)空調(diào)器、彩電、冰箱各多少臺(tái),才能使產(chǎn)值最高最高產(chǎn)值是多少?(以千元為單位)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=﹣mx2+4m的頂點(diǎn)坐標(biāo)為(0,2),矩形ABCD的頂點(diǎn)BCx軸上,A、D在拋物線上,矩形ABCD在拋物線與x軸所圍成的圖形內(nèi)點(diǎn)A在點(diǎn)D的左側(cè).

(1)求二次函數(shù)的解析式;

(2)設(shè)點(diǎn)A的坐標(biāo)為(x,y),試求矩形ABCD的周長(zhǎng)P關(guān)于自變量x的函數(shù)解析式,并求出自變量x的取值范圍;

(3)是否存在這樣的矩形ABCD,使它的周長(zhǎng)為9?試證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,將函數(shù)y=﹣2x2的圖象先向右平移1個(gè)單位長(zhǎng)度,再向上平移5個(gè)單位長(zhǎng)度,所得圖象的函數(shù)表達(dá)式是

查看答案和解析>>

同步練習(xí)冊(cè)答案