已知二次函數(shù)y=-2x2+4x+6.
(1)求出該函數(shù)圖象的頂點坐標(biāo),對稱軸,圖象與x軸、y軸的交點坐標(biāo),并在下面的坐標(biāo)系中畫出這個函數(shù)的大致圖象;
(2)利用函數(shù)圖象寫出:當(dāng)y>0時x的取值范圍?
(1)∵y=-2x2+4x+6=-2(x-1)2+8=-2(x+1)(x-3),
∴拋物線的頂點坐標(biāo)為(1,8),對稱軸為直線x=1
與x軸交點為(-1,0),(3,0)
與y軸交點為(0,6),圖象如下:

(2)由圖象可知,當(dāng)-1<x<3時,y>0.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:拋物線y=(m-1)x2+mx+m2-4的圖象經(jīng)過原點,且開口向上.
(1)確定m的值;
(2)求此拋物線的頂點坐標(biāo);
(3)畫出拋物線的圖象,結(jié)合圖象回答:當(dāng)x取什么值時,y隨x的增大而增大?
(4)結(jié)合圖象回答:當(dāng)x取什么值時,y<0?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,二次函數(shù)y=x2+bx+c的圖象交x軸于A、D兩點,并經(jīng)過B點,已知A點坐標(biāo)是(2,0),B點的坐標(biāo)是(8,6).
(1)求二次函數(shù)的解析式.
(2)求函數(shù)圖象的頂點坐標(biāo)及D點的坐標(biāo).
(3)該二次函數(shù)的對稱軸交x軸于C點.連接BC,并延長BC交拋物線于E點,連接BD,DE,求△BDE的面積.
(4)拋物線上有一個動點P,與A,D兩點構(gòu)成△ADP,是否存在SADP=SBCD?若存在,請求出P點的坐標(biāo);若不存在.請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù)y=3x2-5的頂點坐標(biāo)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y=(x+1)2+2的頂點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

對于二次函數(shù)y=(x-1)2,下列說法正確的是(  )
A.圖象的開口向下
B.當(dāng)x>1時,y隨x的增大而減小
C.當(dāng)x<1時,y隨x的增大而減小
D.圖象的對稱軸是直線x=-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)y=x2+2x+3的頂點坐標(biāo)是( 。
A.(1,2)B.(-1,2)C.(1,4)D.(-1,4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線y=x2+2x-2013的對稱軸是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀下列材料,并解答問題:
函數(shù)y=ax2+bx+c(a≠0)叫做二次函數(shù),它的圖象是拋物線,二次函數(shù)可以化成y=a(x-h)2+k的形式,則點(h,k)為拋物線的頂點坐標(biāo).
例:y=2x2+4x-1=2(x+1)2-3,則頂點坐標(biāo)為(-1,-3).
運用上述方法,求拋物線y=-2x2-3x+4的頂點坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案