【題目】將拋物線y=x2﹣4x+3向上平移至頂點落在x軸上,如圖所示,則兩條拋物線、對稱軸和y軸圍成的圖形的面積S(圖中陰影部分)是(
A.1
B.2
C.3
D.4

【答案】B
【解析】解:∵拋物線y=ax2+bx+c經(jīng)過點A(0,3),B(3,0),C(4,3), ∴
解得 ,
∴拋物線的函數(shù)表達式為y=x2﹣4x+3;
∴y=x2﹣4x+3=(x﹣2)2﹣1,
∴拋物線的頂點坐標(biāo)為(2,﹣1),
∴PP′=1,
陰影部分的面積等于平行四邊形A′APP′的面積,
平行四邊形A′APP′的面積=1×2=2,
∴陰影部分的面積=2.
故選B.

【考點精析】解答此題的關(guān)鍵在于理解二次函數(shù)圖象的平移的相關(guān)知識,掌握平移步驟:(1)配方 y=a(x-h)2+k,確定頂點(h,k)(2)對x軸左加右減;對y軸上加下減.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分線與AB的垂直平分線交于點O,將∠C沿EFEBC上,FAC上)折疊,點C與點O恰好重合,則∠OEC= 度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,A=70°B=50°,點D,E分別為AB,AC上的點,沿DE折疊,使點A落在BC邊上點F處,若EFC為直角三角形,則BDF的度數(shù)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,若∠DBE=78°,則∠A+∠C+∠D+∠E=°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,三角形ABC中,AB=AC,D,E分別為邊AB,AC上的點,DM平分∠BDE,EN平分∠DEC,若∠DMN=110°,則∠DEA=( 。

A. 40° B. 50° C. 60° D. 70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠MAN=16°,A1點在AM上,在AN上取一點A2,使A2A1=AA1,再在AM上取一點A3使A3A2=A2A1,如此一直作下去,到不能再作為止.那么作出的最后一點是( 。

A. A5 B. A6 C. A7 D. A8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,D,E分別是AC,AB上的點,BD與CE交于點O.給出下列三個條件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.上述三個條件中,哪兩個條件可判定△ABC是等腰三角形(用序號寫出一種情形):_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)課外興趣活動小組準(zhǔn)備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊由長為30米的籬笆圍成.已知墻長為18米(如圖所示),設(shè)這個苗圃園垂直于墻的一邊長為x米.
(1)若苗圃園的面積為72平方米,求x;
(2)若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知在△ABC中,AB=AC,DBC邊的中點,過點DDEAB,DFAC,垂足分別為E,F(xiàn).

(1)求證:DE=DF;

(2)若∠A=60°,BE=1,求△ABC的周長.

查看答案和解析>>

同步練習(xí)冊答案