某校為了實施“大課間”活動,計劃購買籃球、排球共60個,跳繩120根.已知一個籃球70元,一個排球50元,一根跳繩10元.設(shè)購買籃球x個,購買籃球、排球和跳繩的總費用為y元.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若購買上述體育用品的總費用為4 700元,問籃球、排球各買多少個?

解:(1)依題意,得y=70x+50(60﹣x)+10×120=20x+4200。
(2)當 y=4700時,4700=20x+4200,解得:x=25
∴排球購買:60﹣25=35(個)。
答:籃球購買25個,排球購買35個

解析試題分析:(1)根據(jù)總費用=購買籃球的費用+購買排球的費用+購買跳繩的費用就可以求出結(jié)論。
(2)把y=4700代入(1)的解析式就可以求出籃球的個數(shù),從而求出排球的個數(shù)。 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知直線與x軸、y軸分別交于點A、B,線段AB為直角邊在第一象限內(nèi)作等腰Rt△ABC,∠BAC=90°.

(1)求△AOB的面積;
(2)求點C坐標;
(3)點P是x軸上的一個動點,設(shè)P(x,0)
①請用x的代數(shù)式表示PB2、PC2;
②是否存在這樣的點P,使得|PC-PB|的值最大?如果不存在,請說明理由;
如果存在,請求出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

閱讀材料:若a,b都是非負實數(shù),則.當且僅當a=b時,“=”成立.
證明:∵,∴
.當且僅當a=b時,“=”成立.
舉例應(yīng)用:已知x>0,求函數(shù)的最小值.
解:.當且僅當,即x=1時,“=”成立.
當x=1時,函數(shù)取得最小值,y最小=4.
問題解決:汽車的經(jīng)濟時速是指汽車最省油的行駛速度.某種汽車在每小時70~110公里之間行駛時(含70公里和110公里),每公里耗油升.若該汽車以每小時x公里的速度勻速行駛,1小時的耗油量為y升.
(1)求y關(guān)于x的函數(shù)關(guān)系式(寫出自變量x的取值范圍);
(2)求該汽車的經(jīng)濟時速及經(jīng)濟時速的百公里耗油量(結(jié)果保留小數(shù)點后一位).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

義潔中學計劃從榮威公司購買A、B兩種型號的小黑板,經(jīng)洽談,購買一塊A型小黑板比買一塊B型小黑板多用20元.且購買5塊A型小黑板和4塊B型小黑板共需820元.
(1)求購買一塊A型小黑板、一塊B型小黑板各需要多少元?
(2)根據(jù)義潔中學實際情況,需從榮威公司購買A、B兩種型號的小黑板共60塊,要求購買A、B兩種型號小黑板的總費用不超過5240元.并且購買A型小黑板的數(shù)量應(yīng)大于購買A、B種型號小黑板總數(shù)量的.請你通過計算,求出義潔中學從榮威公司購買A、B兩種型號的小黑板有哪幾種方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知一次函數(shù)y=k1x+b(k1≠0)的圖象分別與x軸,y軸交于A,B兩點,且與反比例函數(shù)(k2≠0)的圖象在第一象限的交點為C,過點C作x軸的垂線,垂足為D,若OA=OB=OD=2.

(1)求一次函數(shù)的解析式;
(2)求反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,直線MN與x軸,y軸分別相交于A,C兩點,分別過A,C兩點作x軸,y軸的垂線相交于B點,且OA,OC(OA>OC)的長分別是一元二次方程x2﹣14x+48=0的兩個實數(shù)根.

(1)求C點坐標;
(2)求直線MN的解析式;
(3)在直線MN上存在點P,使以點P,B,C三點為頂點的三角形是等腰三角形,請直接寫出P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

為了落實黨中央提出的“惠民政策”,我市今年計劃開發(fā)建設(shè)A、B兩種戶型的“廉租房”共40套.投入資金不超過200萬元,又不低于198萬元.開發(fā)建設(shè)辦公室預(yù)算:一套A型“廉租房”的造價為5.2萬元,一套B型“廉租房”的造價為4.8萬元.
(1)請問有幾種開發(fā)建設(shè)方案?
(2)哪種建設(shè)方案投入資金最少?最少資金是多少萬元?
(3)在(2)的方案下,為了讓更多的人享受到“惠民”政策,開發(fā)建設(shè)辦公室決定通過縮小“廉租房”的面積來降低造價、節(jié)省資金.每套A戶型“廉租房”的造價降低0.7萬元,每套B戶型“廉租房”的造價降低0.3萬元,將節(jié)省下來的資金全部用于再次開發(fā)建設(shè)縮小面積后的“廉租房”,如果同時建設(shè)A、B兩種戶型,請你直接寫出再次開發(fā)建設(shè)的方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

為了節(jié)約資源,科學指導(dǎo)居民改善居住條件,小王向房管部門提出了一個購買商品房的政策性方案.

人均住房面積(平方米)
單價(萬元/平方米)
不超過30(平方米)
0.3
超過30平方米不超過m(平方米)部分(45≤m≤60)
0.5
超過m平方米部分
0.7
根據(jù)這個購房方案:
(1)若某三口之家欲購買120平方米的商品房,求其應(yīng)繳納的房款;
(2)設(shè)該家庭購買商品房的人均面積為x平方米,繳納房款y萬元,請求出y關(guān)于x的函數(shù)關(guān)系式;
(3)若該家庭購買商品房的人均面積為50平方米,繳納房款為y萬元,且57<y≤60 時,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

已知關(guān)于的一元二次方程的兩個實數(shù)根分別為,),則二次函數(shù)中,當時,的取值范圍是(    )

A. B. C. D.

查看答案和解析>>

同步練習冊答案