在平面直角坐標(biāo)系xOy中,對(duì)于任意兩點(diǎn)P1(x1,y1)與P2(x2,y2)的“非常距離”,給出如下定義:
若|x1﹣x2|≥|y1﹣y2|,則點(diǎn)P1與點(diǎn)P2的“非常距離”為|x1﹣x2|;
若|x1﹣x2|<|y1﹣y2|,則點(diǎn)P1與點(diǎn)P2的“非常距離”為|y1﹣y2|.
例如:點(diǎn)P1(1,2),點(diǎn)P2(3,5),因?yàn)閨1﹣3|<|2﹣5|,所以點(diǎn)P1與點(diǎn)P2的“非常距離”為|2﹣5|=3,也就是圖1中線段P1Q與線段P2Q長(zhǎng)度的較大值(點(diǎn)Q為垂直于y軸的直線P1Q與垂直于x軸的直線P2Q交點(diǎn)).
(1)已知點(diǎn)A(﹣,0),B為y軸上的一個(gè)動(dòng)點(diǎn),
①若點(diǎn)A與點(diǎn)B的“非常距離”為2,寫出一個(gè)滿足條件的點(diǎn)B的坐標(biāo);
②直接寫出點(diǎn)A與點(diǎn)B的“非常距離”的最小值;
(2)已知C是直線y=x+3上的一個(gè)動(dòng)點(diǎn),
①如圖2,點(diǎn)D的坐標(biāo)是(0,1),求點(diǎn)C與點(diǎn)D的“非常距離”的最小值及相應(yīng)的點(diǎn)C的坐標(biāo);
②如圖3,E是以原點(diǎn)O為圓心,1為半徑的圓上的一個(gè)動(dòng)點(diǎn),求點(diǎn)C與點(diǎn)E的“非常距離”的最小值及相應(yīng)的點(diǎn)E與點(diǎn)C的坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
無論k取任何實(shí)數(shù),對(duì)于直線都會(huì)經(jīng)過一個(gè)固定的點(diǎn),我們就稱直線恒過定點(diǎn).
(1)無論取任何實(shí)數(shù),拋物線恒過定點(diǎn),直接寫出定點(diǎn)A的坐標(biāo);
(2)已知△ABC的一個(gè)頂點(diǎn)是(1)中的定點(diǎn),且∠B,∠C的角平分線分別是y軸和直線,求邊BC所在直線的表達(dá)式;
(3)求△ABC內(nèi)切圓的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
甲、乙兩人騎車前往A地,他們距A地的路程S(km)與行駛時(shí)間t(h)之間的關(guān)系如圖所示,請(qǐng)根據(jù)圖象所提供的信息解答下列問題:
(1)、甲、乙兩人的速度各是多少?
(2)、求甲距A地的路程S與行駛時(shí)間t的函數(shù)關(guān)系式。
(3)、直接寫出在什么時(shí)間段內(nèi)乙比甲距離A 地更近?(用不等式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知:關(guān)于x的一元二次方程mx2﹣(4m+1)x+3m+3="0" (m>1).
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)方程的兩個(gè)實(shí)數(shù)根分別為x1,x2(其中x1>x2),若y是關(guān)于m的函數(shù),且y=x1﹣3x2,求這個(gè)函數(shù)的解析式;
(3)將(2)中所得的函數(shù)的圖象在直線m=2的左側(cè)部分沿直線m=2翻折,圖象的其余部分保持不變,得到一個(gè)新的圖象.請(qǐng)你結(jié)合這個(gè)新的圖象回答:當(dāng)關(guān)于m的函數(shù)y=2m+b的圖象與此圖象有兩個(gè)公共點(diǎn)時(shí),b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
書生中學(xué)小賣部工作人員到路橋批發(fā)部選購(gòu)甲、乙兩種品牌的文具盒,乙品牌的進(jìn)貨單價(jià)是甲品牌進(jìn)貨單價(jià)的2倍,考慮各種因素,預(yù)計(jì)購(gòu)進(jìn)乙品牌文具盒的數(shù)量(個(gè))與甲品牌文具盒數(shù)量(個(gè))之間的函數(shù)關(guān)系如圖所示,當(dāng)購(gòu)進(jìn)的甲、乙品牌的文具盒中,甲有120個(gè)時(shí),購(gòu)進(jìn)甲、乙品牌文具盒共需7 200元.
(1)根據(jù)圖象,求與之間的函數(shù)關(guān)系式;
(2)求甲、乙兩種品牌的文具盒進(jìn)貨價(jià);
(3)若小賣部每銷售1個(gè)甲種品牌的文具盒可獲利4元,每銷售1個(gè)乙種品牌的文具盒可獲利9元,根據(jù)學(xué)校后勤部決定,準(zhǔn)備用不超過6 300元購(gòu)進(jìn)甲、乙兩種品牌的文具盒,且這兩種文具盒全部售出后獲利不低于1 795元,問小賣部工作人員有幾種進(jìn)貨方案?哪種進(jìn)貨方案能使獲利最大?最大獲利為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,A(1,0),B(4,0),M(5,3).動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿x軸以每秒1個(gè)單位長(zhǎng)的速度向右移動(dòng),且過點(diǎn)P的直線l:y=-x+b也隨之移動(dòng).設(shè)移動(dòng)時(shí)間為t秒.
(1)當(dāng)t=1時(shí),求l的解析式;
(2)若l與線段BM有公共點(diǎn),確定t的取值范圍;
(3)直接寫出t為何值時(shí),點(diǎn)M關(guān)于l的對(duì)稱點(diǎn)落在y軸上.如不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
周末,小明騎自行車從家里出發(fā)到野外郊游.從家出發(fā)0.5小時(shí)后到達(dá)甲地,游玩一段時(shí)間后按原速前往乙地,小明離家1小時(shí)20分鐘后,媽媽駕車沿相同路線前往乙地,如圖是他們離家的路程y(km)與小明離家時(shí)間x(h)的函數(shù)圖象,已知媽媽駕車的速度是小明騎車速度的3倍.
(1)求小明騎車的速度和在甲地游玩的時(shí)間;
(2)小明從家出發(fā)多少小時(shí)后被媽媽追上?此時(shí)離家多遠(yuǎn)?
(3)若媽媽比小明早10分鐘到達(dá)乙地,求從家到乙地的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖所示,一次函數(shù)y=k1x+b與反比例函數(shù)y=(x<0)的圖象相交于A,B兩點(diǎn),且與坐標(biāo)軸的交點(diǎn)為(–6,0),(0,6),點(diǎn)B的橫坐標(biāo)為–4.
(1)試確定反比例函數(shù)的解析式;
(2)求△AOB的面積;
(3)直接寫出不等式k1x+b>的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某文具店準(zhǔn)備購(gòu)進(jìn)甲,乙兩種鋼筆,若購(gòu)進(jìn)甲種鋼筆100支,乙種鋼筆50支,需要1000元,若購(gòu)進(jìn)甲種鋼筆50支,乙種鋼筆30支,需要550元.
(1)求購(gòu)進(jìn)甲,乙兩種鋼筆每支各需多少元?
(2)若該文具店準(zhǔn)備拿出1000元全部用來購(gòu)進(jìn)這兩種鋼筆,考慮顧客需求,要求購(gòu)進(jìn)甲中鋼筆的數(shù)量不少于乙種鋼筆數(shù)量的6倍,且不超過乙種鋼筆數(shù)量的8倍,那么該文具店共有幾種進(jìn)貨方案?
(3)若該文具店銷售每支甲種鋼筆可獲利潤(rùn)2元,銷售每支乙種鋼筆可獲利潤(rùn)3元,在第(2)問的各種進(jìn)貨方案中,哪一種方案獲利最大?最大利潤(rùn)是多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com