【題目】已知:如圖,D是△ABC的邊BC上的一點,且CD=AB,∠BDA=∠BAD,AE是△ABD的中線.
⑴若∠B=60°,求∠C的值;
⑵求證:AD是∠EAC的平分線.
【答案】(1)∠C=30°;(2)詳見解析.
【解析】
(1)根據已知條件得到∠BAD=∠BDA=60°,于是得到AB=AD,等量代換得到CD=AD,根據等腰三角形的性質得到∠DAC=∠C,推出∠BDA=∠DAC+∠C=2∠C,即可得到結論;
(2)證明:延長AE到M,使EM=AE,連接DM,推出△ABE≌△MDE,根據全等三角形的性質得到∠B=∠MDE,AB=DM,根據全等三角形的判定定理得到△MAD≌△CAD,根據全等三角形的性質得到∠MAD=∠CAD于是得到結論.
(1)∵∠B=60°,∠BDA=∠BAD,
∴∠BAD=∠BDA=60°,
∴AB=AD,
∵CD=AB,
∴CD=AD,
∴∠DAC=∠C,
∴∠BDA=∠DAC+∠C=2∠C,
∵∠BAD=60°,
∴∠C=30°;
(2)證明:延長AE到M,使EM=AE,連接DM,
在△ABE和△MDE中,
,
∴△ABE≌△MDE,
∴∠B=∠MDE,AB=DM,
∵∠ADC=∠B+∠BAD=∠MDE+∠BDA=∠ADM,
在△MAD與△CAD,
,
∴△MAD≌△CAD,
∴∠MAD=∠CAD,
∴AD是∠EAC的平分線.
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是等腰直角三角形,∠A=90°,BC=4,點P是△ABC邊上一動點,沿B→A→C的路徑移動,過點P作PD⊥BC于點D,設BD=x,△BDP的面積為y,則下列能大致反映y與x函數關系的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,點P,Q分別在BC,AC上,AQ=PQ,PR=PS,PR⊥AB于點R,PS⊥AC于點S,則下面結論錯誤的是( )
A. ∠BAP=∠CAP B. AS=AR
C. QP∥AB D. △BPR≌△QPS
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線y=ax2+c與x軸交于A,B兩點,頂點為C,點P為拋物線上,且位于x軸下方.
(1)如圖1,若P(1,﹣3),B(4,0).
①求該拋物線的解析式;
②若D是拋物線上一點,滿足∠DPO=∠POB,求點D的坐標;
(2)如圖2,已知直線PA,PB與y軸分別交于E、F兩點.當點P運動時, 是否為定值?若是,試求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】請你用學習“一次函數”時積累的經驗和方法研究函數y=|x|的圖象和性質,并解決問題.
(1)完成下列步驟,畫出函數y=|x|的圖象;
①列表、填空;
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | 3 | 1 | 1 | 2 | 3 | … |
②描點;
③連線.
(2)觀察圖象,當x 時,y隨x的增大而增大;
(3)根據圖象,不等式|x|<x+的解集為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,O是直線AB上一點,是直角,OE平分.
若,則______;若,則______;
若,則______用含的式子表示,請說明理由;
在的內部有一條射線OF,滿足,試確定與的度數之間的關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著科技與經濟的發(fā)展,機器人自動化線的市場越來越大,并且逐漸成為自動化生產線的主要方式某化工廠要在規(guī)定時間內搬運1800千克化工原料,現有A,B兩種機器人可供選擇,已知A型機器人每小時完成的工作量是B型機器人的1.5倍,A型機器人單獨完成所需的時間比B型機器人少10小時.
(1)求兩種機器人每小時分別搬運多少千克化工原料?
(2)若A型機器人工作1小時所需的費用為80元,B型機器人工作1小時所需的費用為60元,若該工廠在兩種機器人中選擇其中的一種機器人單獨完成搬運任務,則選擇哪種機器人所需費用較?請計算說明.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com