如圖,已知AB是⊙O的直徑,點C、D在⊙O上,點E在⊙O外,∠EAC=∠D=60°.

(1)求∠ABC的度數(shù);(本題2分)
(2)求證:AE是⊙O的切線;(本題2分)
(3)當BC=4時,求劣弧AC的長.(本題3分)
(1)60°(2)見解析(3)

試題分析:解:(1)∵∠ABC與∠D都是弧AC所對的圓周角,
∴∠ABC=∠D=60°; 
(2)∵AB是⊙O的直徑,
∴∠ACB=90°.
∴∠BAC=30°,
∴∠BAE=∠BAC+∠EAC=30°+60°=90°,
即BA⊥AE,
∴AE是⊙O的切線;
(3)連接OC,
∵OB=OC,∠ABC=60°,
∴△OBC是等邊三角形,
∴OB=BC=4,∠BOC=60°,
∴∠AOC=120°,
∴劣弧AC的長為
點評:此類試題屬于難度一般的試題,考生在解答此類試題時一定要垂徑定理、切線定理和圓的基本知識熟練把握
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

(6分)已知:如圖,在△ABC中,AB為⊙O的直徑,BC,AC分別交⊙O于D、E兩點, ,連接AD,求證:△ABD≌△ACD.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在以O為圓心的兩個同心圓中,大圓的弦AB與小圓相切于點C,若弦AB的長為8cm.則圓環(huán)的面積為________cm2
 

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,⊙O是△ABC的外接圓,∠A=50°,則∠BOC的度數(shù)為
A.40°B.50° C.80°D.100°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,BC是⊙O的切線,D是⊙O上一點,且AD∥OC

(1)求證:△ADB∽△OBC;
(2)若AB=2,BC=,求AD的長(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,A、B、C為⊙O上三點,∠ACB=25º,則∠BAO的度數(shù)為      .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,PA、PB分別與⊙O相切于點A、B,⊙O的切線EF分別交PA、PB于點E、F,切點C在弧AB上,若PA長為2,則△PEF的周長是_           _

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,已知△ABC為等腰直角三角形,∠BAC=90°,AC=2,以點C為圓心,1為半徑作圓,點P為⊙C上一動點,連結AP,并繞點A順時針旋轉(zhuǎn)90°得到AP′,連結CP′,則CP′的取值范圍是__________.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

⊙O的半徑為6,一條弦長為6,這條弦所對的圓周角為      度。

查看答案和解析>>

同步練習冊答案