已知,在Rt△ABC中,∠BAC=90°,AD⊥BC于點(diǎn)D,點(diǎn)O是AC邊上一點(diǎn),連接BO交AD于點(diǎn)F,OE⊥OB交BC邊于點(diǎn)E.
(1)如圖1,求證△ABF∽△COE;
(2)如圖2,點(diǎn)O是AC邊的中點(diǎn),AB=1,AC=2.①求證BF=OE;②求OE的長(zhǎng).
【答案】分析:(1)由垂直的性質(zhì)和等量代換,可得∠BAF=∠C,∠ABF=∠COE,即可證得;
(2)①易得AB=OC,由(1)知△ABF∽△COE,即可證明BF=OE;②根據(jù)三角形的面積得AD=,由勾股定理得BO、BD的長(zhǎng),設(shè)OE=BF=x,由又△BDF∽△BOE,可得出DF=x,在直角△DFB中,根據(jù)勾股定理解答出即可.
解答:解:(1)∵AD⊥BC,
∴∠DAC+∠C=90°,
∵∠BAC=90°,
∴∠DAC+∠BAF=90°,
∴∠BAF=∠C,
∵OE⊥OB,
∴∠BOA+∠COE=90°,
∵∠BOA+∠ABF=90°,
∴∠ABF=∠COE,
∴△ABF∽△COE;

(2)①∵O是AC邊的中點(diǎn),AC=2,
∴AO=OC=1,
∵AB=1,
∴AB=OC,
由(1)知△ABF∽△COE,
∴△ABF≌△COE,
∴BF=OE;
②在直角△ABC中,BC===,
由S△ABC=AB×AC=AD×BC得,2=AD,
∴AD=,
在直角△ABD中,BD===,
在直角△ABO中,BO===,
∵∠BDF=∠BOE=90°,∠FBD=∠EBO,
∴△BDF∽△BOE,
=,
設(shè)OE=BF=x,
=,
∴DF=x,
在直角△DFB中,由BF2=BD2+FD2,
得,x2=+x2,
∴x=,
∴OE的長(zhǎng)為
點(diǎn)評(píng):本題主要考查了相似三角形的判定與性質(zhì)、垂線的性質(zhì)及勾股定理,根據(jù)三角形的相似,列出關(guān)系式是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:在Rt△ABC中,∠ACB=90°,AC=BC=4,M是邊AB的中點(diǎn),E、G分別是邊AC、BC上的一點(diǎn),∠EMG=45°,AC與MG的延長(zhǎng)線相交于點(diǎn)F.
(1)在不添加字母和線段的情況下寫出圖中一定相似的三角形,并證明其中的一對(duì);
(2)連接結(jié)EG,當(dāng)AE=3時(shí),求EG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:在Rt△ABC中,∠C=90°,∠A=30°,b=2
3
,解這個(gè)直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知,在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=6cm;D為AC上一點(diǎn)(不與A、C不精英家教網(wǎng)重合),過D作DQ⊥AC(DQ與AB在AC的同側(cè));點(diǎn)P從D點(diǎn)出發(fā),在射線DQ上運(yùn)動(dòng),連接PA、PC.
(1)當(dāng)PA=PC時(shí),求出AD的長(zhǎng);
(2)當(dāng)△PAC構(gòu)成等腰直角三角形時(shí),求出AD、DP的長(zhǎng);
(3)當(dāng)△PAC構(gòu)成等邊三角形時(shí),求出AD、DP的長(zhǎng);
(4)在運(yùn)動(dòng)變化過程中,△CAP與△ABC能否相似?若△CAP與△ABC相似,求出此時(shí)AD與DP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:在Rt△ABC中,∠C=90°,AC=BC,M是AC的中點(diǎn),連接BM,CF⊥MB,F(xiàn)是垂足,延長(zhǎng)CF交AB于點(diǎn)E.求證:∠AME=∠CMB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:在Rt△ABC中,∠C=90°,點(diǎn)O在AB上,以O(shè)為圓心,OA長(zhǎng)為半徑的圓與AC、AB分別交于點(diǎn)D、E,且∠CBD=∠A.
(1)觀察圖形,猜想BD與⊙O的位置關(guān)系:
相切
相切
;
(2)證明第(1)題的猜想.

查看答案和解析>>

同步練習(xí)冊(cè)答案