【題目】為了提倡保護自然資源,節(jié)約自然資源,某部門對某縣一次性筷子的用量進行了調(diào)查.2015年從該縣600家高、中、低檔飯店中抽取了10家進行調(diào)查,得知這些飯店每天消耗的一次性筷子的盒數(shù)分別為:0.6,3.7,2.21.5,2.81.7,1.22.1,3.2,1.0.

(1)估計該縣2015年各飯店共消耗多少盒一次性筷子?(一年按350個營業(yè)日計算)

(2)(1)的條件下,若生產(chǎn)一套學(xué)生課桌椅需木材0.07 m3,則該縣2015年各飯店使用一次性筷子所消耗的木材可以生產(chǎn)多少套學(xué)生課桌椅?(計算中需用到的有關(guān)數(shù)據(jù)為:每盒筷子100雙,每雙筷子的質(zhì)量為5 g,所用木材的密度為0.5×103 kg/m3)

(3)通過以上計算,你對保護自然資源有什么看法?請?zhí)岢鰞蓷l合理的看法.

【答案】(1)420 000;(2)6 000;(3)①盡量減少使用一次性筷子;②加大對一次性筷子回收利用的力度.(答案不唯一)

【解析】

1)首先求出樣本的平均數(shù),即為1家飯店1天消耗一次性木質(zhì)筷子的盒數(shù),然后再求出600家飯店350天消耗的一次性木質(zhì)筷子的盒數(shù).
2)先求出一次性木質(zhì)筷子的總質(zhì)量420 000×100×5kg),再求出木材的總體積約為:210 000÷(0.5×103),從而即可解題;

3)聯(lián)系實際提出合理的建議即可.

解:(1)樣本的平均數(shù) ×(0.63.72.21.52.81.71.22.13.21.0)2(),因此該縣2015年各飯店共消耗一次性筷子約2×350×600420 000()

(2)該縣2015年各飯店使用一次性筷子所消耗的木材約為420 000×100×5210 000 000(g)210 000(kg),則木材的體積約為210 000÷(0.5×103)420(m3),故可生產(chǎn)學(xué)生課桌椅約為420÷0.076 000()

(3)①盡量減少使用一次性筷子;②加大對一次性筷子回收利用的力度.(答案不唯一)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y1=x2+mx+n,直線y2=2x+1,拋物線y1的對稱軸與直線y2的交點為點A,且點A的縱坐標(biāo)為5.

(1)求m的值;

(2)若點A與拋物線y1的頂點B的距離為4,求拋物線y1的解析式;

(3)若拋物線y1與直線y2只有一個公共點,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)下列要求,解答相關(guān)問題.

1)請補全以下求不等式﹣2x2﹣4x0的解集的過程.

構(gòu)造函數(shù),畫出圖象:根據(jù)不等式特征構(gòu)造二次函數(shù)y=﹣2x2﹣4x;并在下面的坐標(biāo)系中(圖1)畫出二次函數(shù)y=﹣2x2﹣4x的圖象(只畫出圖象即可).

求得界點,標(biāo)示所需,當(dāng)y=0時,求得方程﹣2x2﹣4x=0的解為 ;并用鋸齒線標(biāo)示出函數(shù)y=﹣2x2﹣4x圖象中y0的部分.

借助圖象,寫出解集:由所標(biāo)示圖象,可得不等式﹣2x2﹣4x0的解集為﹣2x0.請你利用上面求一元一次不等式解集的過程,求不等式x2﹣2x+1≥4的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小美周末來到公園,發(fā)現(xiàn)在公園一角有一種“守株待兔”游戲.游戲設(shè)計者提供了一只兔子和一個有A、B、C、D、E五個出入口的兔籠,而且籠內(nèi)的兔子從每個出入口走出兔籠的機會是均等的.規(guī)定:

玩家只能將小兔從A、B兩個出入口放入;

如果小兔進入籠子后選擇從開始進入的出入口離開,則可獲得一只價值5元小兔玩具,否則應(yīng)付費3元.

(1)問小美得到小兔玩具的機會有多大?

(2)假設(shè)有100人次玩此游戲,估計游戲設(shè)計者可賺多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A′B′C′∽△ABC,且A′E′,AE是角平分線,A′D′,AD是中線.求證:A′D′E′∽△ADE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在圓O中,弦AB8,點C在圓O(CA,B不重合),連接CACB,過點O分別作ODAC,OEBC,垂足分別是點D、E

(1)求線段DE的長;

(2)OAB的距離為3,求圓O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,點DBC上一點,且AD=DC,過A,B,D三點作⊙OAE⊙O的直徑,連結(jié)DE

1)求證:AC⊙O的切線;

2)若sinC=,AC=6,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線yax2+bx+3(a≠0)經(jīng)過(1,0),且與y軸交于點C

(1)直接寫出點C的坐標(biāo)   ;

(2)求ab的數(shù)量關(guān)系;

(3)點Dt,3)是拋物線yax2+bx+3上一點(點D不與點C重合).

當(dāng)t=3時,求拋物線的表達式;

當(dāng)3<CD<4時,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2+bx+ca,b,c為常數(shù),且a≠0)中的xy的部分對應(yīng)值如下表給出了以下結(jié)論:

x

3

2

1

0

1

2

3

4

5

y

12

5

0

3

4

3

0

5

12

①二次函數(shù)yax2+bx+c有最小值,最小值為﹣3;②當(dāng)﹣x2時,y0;③二次函數(shù)yax2+bx+c的圖象與x軸有兩個交點,且它們分別在y軸的兩側(cè);④當(dāng)x1時,yx的增大而減小.則其中正確結(jié)論有(

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

同步練習(xí)冊答案