【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸為x=1,且過點(diǎn)(﹣3,0).下列說法:其中說法正確的是( )①abc0;②2ab=0;③4a+2b+c0;④若(﹣5,y1),(,y2)是拋物線上兩點(diǎn),則y1y2

A. ①② B. ②③ C. ①②④ D. ②③④

【答案】C

【解析】

根據(jù)圖象得出a0b=2a0,c0,即可判斷①②;把x=2代入拋物線的解析式即可判斷③,求出點(diǎn)(﹣5y1)關(guān)于對稱軸的對稱點(diǎn)的坐標(biāo)是(3,y1),根據(jù)當(dāng)x>﹣1時,yx的增大而增大即可判斷④.

∵二次函數(shù)的圖象的開口向上,∴a0

∵二次函數(shù)的圖象y軸的交點(diǎn)在y軸的負(fù)半軸上,∴c0

∵二次函數(shù)圖象的對稱軸是直線x=1,∴=1,∴b=2a0,∴abc0,∴①正確;

2ab=2a2a=0,∴②正確;

∵二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸為x=1,且過點(diǎn)(﹣3,0).

∴與x軸的另一個交點(diǎn)的坐標(biāo)是(1,0),∴把x=2代入y=ax2+bx+c得:y=4a+2b+c0,∴③錯誤;

∵二次函數(shù)y=ax2+bx+c圖象的對稱軸為x=1,∴點(diǎn)(﹣5,y1)關(guān)于對稱軸的對稱點(diǎn)的坐標(biāo)是(3,y1),根據(jù)當(dāng)x>﹣1時,yx的增大而增大.

3,∴y2y1,∴④正確.

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】溫州市處于東南沿海,夏季經(jīng)常遭受臺風(fēng)襲擊,一次,溫州氣象局測得臺風(fēng)中心在溫州市的正西方向300千米的處,以每小時千米的速度向東偏南方向移動,距臺風(fēng)中心200千米的范圍是受臺風(fēng)嚴(yán)重影響的區(qū)域,試問:

1)臺風(fēng)中心在移動過程中離溫州市最近距離是多少千米?

2)溫州市是否受臺風(fēng)影響?若不會受到,請說明理由;若會受到,求出溫州市受臺風(fēng)嚴(yán)重影響的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CD是⊙O的切線,點(diǎn)C在直徑AB的延長線上.

(1)求證:∠CAD=BDC;

(2)若BD=AD,AC=3,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點(diǎn)在第一象限,且過點(diǎn)(0,1)和(﹣1,0).下列結(jié)論:ab<0,b24a,0<a+b+c<2,0<b<1,當(dāng)x>﹣1時,y>0,其中正確結(jié)論的個數(shù)是

A.5個 B.4個 C.3個 D.2個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)a≠0)的圖象如圖所示,則下列結(jié)論中正確的是

A. a0 B. 當(dāng)﹣1x3時,y0

C. c0 D. 當(dāng)x≥1時,yx的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸交于點(diǎn)AB,與軸交于點(diǎn)C。過點(diǎn)CCDx軸,交拋物線的對稱軸于點(diǎn)D,連結(jié)BD。已知點(diǎn)A坐標(biāo)為(-1,0)。

1)求該拋物線的解析式;

2)求梯形COBD的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】炮彈的運(yùn)行軌道若不計空氣阻力是一條拋物線.現(xiàn)測得我軍炮位A與射擊目標(biāo)B的水平距離為600m,炮彈運(yùn)行的最大高度為1200m.

(1)求此拋物線的解析式;

(2)若在AB之間距離A點(diǎn)500m處有一高350m的障礙物,計算炮彈能否越過障礙物.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在同一平面內(nèi),將兩個全等的等腰直角擺放在一起,為公共頂點(diǎn),,它們的斜邊長為2,若固定不動,繞點(diǎn)旋轉(zhuǎn),、與邊的交點(diǎn)分別為、(點(diǎn)不與點(diǎn)重合,點(diǎn)不與點(diǎn)重合),設(shè),.

(1)請在圖中找出兩對相似而不全等的三角形,并選取其中一對加以證明.

(2)的函數(shù)關(guān)系式,直接寫出自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A、B、C、D均在⊙O上,FB與⊙O相切于點(diǎn)B,ABCF交于點(diǎn)G,OACF于點(diǎn)E,ACBF

(1)求證:FG=FB

(2)若tan∠F=,⊙O的半徑為4,求CD的長.

查看答案和解析>>

同步練習(xí)冊答案