【題目】小明從家去上學,先步行一段路,因時間緊,他改騎共享單車,結果到學校時遲到了7min,其行駛的路程(單位:)與時間(單位:)的關系如圖.若他出門時直接騎共享單車(兩次騎車速度相同),則下列說法正確的是( )

A.小明會遲到2min到校B.小明剛好按時到校

C.小明可以提前1min到校D.小明可以提前2min到校

【答案】B

【解析】

根據(jù)題意和函數(shù)圖象中的數(shù)據(jù),可以計算出小明從開始到到學校全程騎共享單車用的時間,然后再根據(jù)題意,可以得到小明正常到校用的時間,然后即可解答本題.

解:由題意可得,小明到學校正常時間為20-7=13min),

如果小明從開始到到學校全程騎共享單車,用的時間為:

min),

故如果小明從開始到到學校全程騎共享單車,小明剛好按時到校,
故選:B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知,是⊙O的直徑,弦垂直平分,垂足為,連接

1)如圖1,求的度數(shù);

2)如圖2,點分別為上一點,并且,連接,交點為G,R上一點,連接交于點H,,求證:;

3)如圖3,在(2)的條件下,,求⊙O半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在RtABC中,∠C=90°,AC=BC=,直線L過AB中點O,過點A、C分別向直線L作垂線,垂足分別為E、F.若CF=1,則EF=__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C90°,AC15,BC20,經過點CO與△ABC的每條邊都相交.OAC邊的另一個公共點為D,與BC邊的另一個公共點為E,與AB邊的兩個公共點分別為F、G.設O的半徑為r

(操作感知)

1)根據(jù)題意,僅用圓規(guī)在圖中作出一個滿足條件的O,并標明相關字母;

(初步探究)

2)求證:CD2+CE24r2;

3)當r8時,則CD2+CE2+FG2的最大值為   

(深入研究)

4)直接寫出滿足題意的r的取值范圍;對于范圍內每一個確定的r的值,CD2+CE2+FG2都有最大值,每一個最大值對應的圓心O所形成的路徑長為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某課外學習小組根據(jù)學習函數(shù)的經驗,對函數(shù)的圖象與性質進行了探究請補充完整以下探索過程:

1)列表:

x

-5

-4

-3

-2

-1

0

1

2

3

4

y

m

0

-3

-4

-3

0

-3

-4

n

0

直接寫出________,________

2)根據(jù)上表中的數(shù)據(jù),在平面直角坐標系內補全該函數(shù)的圖象,并結合圖象寫出該函數(shù)的兩條性質:

性質1______________________________________________________

性質2_______________________________________________________

3)若方程有四個不同的實數(shù)根,請根據(jù)函數(shù)圖象,直接寫出k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是由邊長為1的小正方形構成的網(wǎng)格,每個小正方形的頂點叫做格點.的頂點在格點上,僅用無刻度尺的直尺在給定網(wǎng)格中畫圖,畫圖過程用虛線表示,畫圖結果用實線表示,按步驟完成下列問題:

(1)將邊繞點順時針旋轉90°得到線段;

(2)畫邊的中點;

(3)連接并延長交于點,直接寫出的值;

(4)上畫點,連接,使

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線yx與雙曲線yk0)的一個交點為Pn).將直線向上平移b00)個單位長度后,與x軸,y軸分別交于點A,點B,與雙曲線的一個交點為Q.若AQ3AB,則b____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形的頂點軸上(的左側),頂點、軸上方,對角線的長是,點的中點,點在菱形的邊上運動.當點所在直線的距離取得最大值時,點恰好落在的中點處,則菱形的邊長等于( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在練習操控航拍無人機,該型號無人機在上升和下落時的速度相同,設無人機的飛行高度為y(米),小明操控無人飛機的時間為x(分),yx之間的函數(shù)圖象如圖所示.

(1)無人機上升的速度為   /分,無人機在40米的高度上飛行了   分.

(2)求無人機下落過程中,yx之間的函數(shù)關系式.

(3)求無人機距地面的高度為50米時x的值.

查看答案和解析>>

同步練習冊答案