【題目】小紅將筆記本電腦水平放置在桌子上,顯示屏OB與底板OA所在水平線的夾角為120°,感覺最舒適(如圖1),側面示意圖為圖2.使用時為了散熱,她在底板下墊入散熱架ACO′后,電腦轉到AO′B′位置(如圖3),側面示意圖為圖4.已知OA=OB=24cm,O′C⊥OA于點C,O′C=12cm.
(1)求∠CAO′的度數(shù).
(2)顯示屏的頂部B′比原來升高了多少?
(3)如圖4,墊入散熱架后,要使顯示屏O′B與水平線的夾角仍保持120°,則顯示屏O′B′應繞點O′按順時針方向旋轉多少度?
【答案】解:(1)∵O′C⊥OA于C,OA=OB=24cm,
∴sin∠CAO′=,
∴∠CAO′=30°;
(2)過點B作BD⊥AO交AO的延長線于D
∵sin∠BOD=,
∴BD=OBsin∠BOD,
∵∠AOB=120°,
∴∠BOD=60°,
∴BD=OBsin∠BOD=24×=12,
∵O′C⊥OA,∠CAO′=30°,
∴∠AO′C=60°,
∵∠AO′B′=120°,
∴∠AO′B′+∠AO′C=180°,
∴O′B′+O′C﹣BD=24+12﹣12=36﹣12,
∴顯示屏的頂部B′比原來升高了(36﹣12)cm;
(3)顯示屏O′B′應繞點O′按順時針方向旋轉30°,
理由:∵顯示屏O′B與水平線的夾角仍保持120°,
∴∠EO′F=120°,
∴∠FO′A=∠CAO′=30°,
∵∠AO′B′=120°,
∴∠EO′B′=∠FO′A=30°,
∴顯示屏O′B′應繞點O′按順時針方向旋轉30°.
【解析】(1)通過解直角三角形即可得到結果;
(2)過點B作BD⊥AO交AO的延長線于D,通過解直角三角形求得BD=OBsin∠BOD=24×=12 , 由C、O′、B′三點共線可得結果;
(3)顯示屏O′B′應繞點O′按順時針方向旋轉30°,求得∠EO′B′=∠FO′A=30°,既是顯示屏O′B′應繞點O′按順時針方向旋轉30°.
科目:初中數(shù)學 來源: 題型:
【題目】已知A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2.
(1)化簡:2B﹣A;
(2)已知﹣a|x﹣2|b2與aby的同類項,求2B﹣A的值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BE是圓O的直徑,A在EB的延長線上,AP為圓O的切線,P為切點,弦PD垂直于BE于點C.
(1)求證:∠AOD=∠APC;
(2)若OC:CB=1:2,AB=6,求圓O的半徑及tan∠APB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m, CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.
(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=,其中為任意銳角或鈍角.請問結論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
(3)拓展與應用:如圖(3),D、E是D、A、E三點所在直線m上的兩動點(D、A、E三點互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩位同學將一個二次三項式因式分解,一位同學因看錯了一次項系數(shù)而分解成2,另一位同學因看錯了常數(shù)項而分解成2,請將原多項式因式分解.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道不等式的兩邊加(或減)同一個數(shù)(或式子),不等號的方向不變.不等式組是否也具有類似的性質呢?請解答下列問題.
(1)完成下列填空:
已知 | 用“<”或“>”填空 |
5+2_____3+1 | |
﹣3﹣1_____﹣5﹣2 | |
1﹣2_____4+1 |
(2)一般地,如果那么a+c_____b+d(用“<”或“>”填空).請你說明上述性質的正確性.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)求出△ABC的面積;
(2)在圖中作出△ABC關于y軸的對稱圖形△A1B1C1;
(3)寫出點A1,B1,C1的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某天放學后,小紅步行,小麗騎自行車沿同一條筆直的馬路到圖書館看書,圖中線段OA、BC分別表示小紅、小麗離開學校的路程s(米)與小紅所用的時間t(分鐘)的函數(shù)關系,根據(jù)圖象解答下列問題:
(1)小麗比小紅遲出發(fā) 分鐘,小紅步行的速度是 米/分鐘;(直接寫出結果)
(2)兩人在路上相距不超過200米的時間有多少分鐘?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校舉行了“文明在我身邊”攝影比賽.已知每幅參賽作品成績記為x分(60≤x<100).校方從600幅參賽作品中隨機抽取了部分參賽作品,統(tǒng)計了它們的成績,并繪制了如下不完整的統(tǒng)計圖表.
分數(shù)段 | 頻數(shù) | 頻率 |
60≤x<70 | 18 | 0.36 |
70≤x<80 | 17 | c |
80≤x<90 | a | 0.24 |
90≤x<100 | b | 0.06 |
合計 | 1 |
根據(jù)以上信息解答下列問題:
(1)統(tǒng)計表中c的值為________;樣本成績的中位數(shù)落在分數(shù)段________中;
(2)補全頻數(shù)直方圖;
(3)若80分以上(含80分)的作品將被組織展評,試估計全校被展評的作品數(shù)量是多少.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com