【題目】已知:如圖,在ABC中,∠BAC=90°,M是斜邊BC的中點,BNAM,垂足為點N,且BN的延長線交AC于點D

(1)求證:ABCADB

(2)如果BC=20,BD=15,求AB的長度.

【答案】(1)見解析;(2)12

【解析】

(1)根據(jù)直角三角形的性質(zhì)和相似三角形的判定證明即可;

(2)根據(jù)相似三角形的性質(zhì)解答即可.

(1)M是斜邊BC的中點,

AM=CM∴∠MAC=C,

∵∠MAC+BAN=90°,ABD+BAN=90°,

∴∠MAC=ABD

∴∠C=ABD,

∵∠BAC=DAB=90°,

∴△ABC∽△ADB;

(2)∵△ABC∽△ADB

===,

設(shè)AC=4x,AB=3x

可得:(4x2+(3x2=202,

解得:x=±4(負值舍去),

AB=3x=12.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某單位有職工200人,其中青年職工(2035歲),中年職工(3550歲),老年職工(50歲及以上)所占比例如扇形統(tǒng)計圖所示.

為了解該單位職工的健康情況,小張、小王和小李各自對單位職工進行了抽樣調(diào)查,將收集的數(shù)據(jù)進行了整理,繪制的統(tǒng)計表分別為表1、表2和表3

1:小張抽樣調(diào)查單位3名職工的健康指數(shù)

年齡

26

42

57

健康指數(shù)

97

79

72

2:小王抽樣調(diào)查單位10名職工的健康指數(shù)

年齡

23

25

26

32

33

37

39

42

48

52

健康指數(shù)

93

89

90

83

79

75

80

69

68

60

3:小李抽樣調(diào)查單位10名職工的健康指數(shù)

年齡

22

29

31

36

39

40

43

46

51

55

健康指數(shù)

94

90

88

85

82

78

72

76

62

60

根據(jù)上述材料回答問題:

小張、小王和小李三人中,誰的抽樣調(diào)查的數(shù)據(jù)能夠較好地反映出該單位職工健康情況,并簡要說明其他兩位同學抽樣調(diào)查的不足之處.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點P的坐標為(0,4),直線yx3x軸、y軸分別交于點AB,點M是直線AB上的一個動點,則PM的最小值為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與探究

如圖1,在平面直角坐標系中,菱形的頂點軸上,反比例函數(shù))的圖象經(jīng)過點,并與線段交于點,反比例函數(shù))的圖象經(jīng)過點軸于點.已知

1)求點的坐標及反比例函數(shù))的表達式;

2)直接寫出點的坐標 ;

3)如圖2,點軸正半軸上的一個動點,過點軸的垂線,分別交反比例函數(shù))與反比例函數(shù))的圖象于點,設(shè)點的坐標為

①當時,求的值;

②在點運動過程中,是否存在某一時刻,使?若存在,直接寫出點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】郴州市正在創(chuàng)建全國文明城市,某校擬舉辦創(chuàng)文知識搶答賽,欲購買A、B兩種獎品以鼓勵搶答者.如果購買A20件,B15件,共需380元;如果購買A15件,B10件,共需280元.

(1)A、B兩種獎品每件各多少元?

(2)現(xiàn)要購買A、B兩種獎品共100件,總費用不超過900元,那么A種獎品最多購買多少件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知RtABCRtADEABCADE=90°,BCDE相交于點F,連接CD,EB.

(1)圖中還有幾對全等三角形,請你一一列舉;

(2)求證:CFEF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的直徑AB=8,C為弧AB的中點,P為⊙O上一動點,連接AP、CP,過CCDCPAP于點D,點PB運動到C時,則點D運動的路徑長為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,RtABC中,∠ABC=90°,∠CAB的平分線交BC于點O,以O為圓心,OB長為半徑作⊙O

1)求證:⊙OAC相切.

2)若AB=6,AC=10

①求⊙O的半徑;

②如圖②,延長AO交⊙O于點D,過點D作⊙O的切線,分別交AC、AB的延長線于EF,試求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:RtABC中,∠C=90°,AC=BC=2,將一塊三角尺的直角頂點與斜邊AB的中點M重合,當三角尺繞著點M旋轉(zhuǎn)時,兩直角邊始終保持分別與邊BCAC交于D,E兩點(D、E不與BA重合)

(1)求證:MD=ME;

(2)求四邊形MDCE的面積:

(3)若只將原題目中的“AC=BC=2”改為“BC=aAC=b,(ab)”其它都不變,請你探究:MDME還相等嗎?如果相等,請證明;如果不相等,請求出MDME的值.

查看答案和解析>>

同步練習冊答案