【題目】如圖1所示,雙曲線y= (k≠0)與拋物線y=ax2+bx(a≠0)交于A、B、C三點(diǎn),已知B(4,2),C(-2,-4),直線CO交雙曲線于另一點(diǎn)D,拋物線與x軸交于另一點(diǎn)E.

(1)求雙曲線和拋物線的解析式;

(2)在拋物線上是否存在點(diǎn)P,使得∠POE+BCD=90°?若存在,請求出滿足條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由;

(3)如圖2所示,過點(diǎn)B作直線LOB,過點(diǎn)DDFLF,BDOF交于點(diǎn)P,的值.

【答案】1雙曲線的解析式為y=,拋物線的解析式為y= ;(2滿足條件的P點(diǎn)有一個(gè)(18,-54);(3

【解析】試題分析:

1)把點(diǎn)B、C的坐標(biāo)分別代入反比例函數(shù)和拋物線的解析式用待定系數(shù)法即可求得兩個(gè)函數(shù)的解析式了;

(2)連接BD,由點(diǎn)C的坐標(biāo)可得直線OC的解析式為y=2x,及直線OC與的另一個(gè)交點(diǎn)D的坐標(biāo)為(2,4),結(jié)合點(diǎn)B的坐標(biāo)可得BC= ,DB= ,CD= 由此根據(jù)勾股定理的逆定理可得∠CBD=90°tan BDC=,再證∠POE=BDC即可

得到tan∠POE=3從而說明點(diǎn)P在直線y=3xy=-3x上,結(jié)合點(diǎn)P又在拋物線上,即可分兩種情況進(jìn)行討論求出點(diǎn)P的坐標(biāo)了;

3)如圖2,由點(diǎn)B的坐標(biāo)可得直線OB的解析式為y= lOB且過點(diǎn)B可求得l的解析式為y=-2x+10,DFOB結(jié)合點(diǎn)D的坐標(biāo)可求得直線DF的解析式為y=x+3,這樣由lDF的解析式可求得點(diǎn)F的坐標(biāo),這樣就可得求得DF的長了,結(jié)合OB的長和DFOB即可由平行線分線段成比例求得的值了.

試題解析:

(1)B(4,2)代人y= (k≠0)2=,解得k=8z,

∴雙曲線的解析式為y=

B(4,2),C(-2,-4)代入y=ax2+bx得,

,

∴拋物線的解析式為y= ;

(2)連接DB,

C(-2,-4),

∴直線OC的解析式為y=2xy= 的另一個(gè)交點(diǎn)D(2,4),

∴由兩點(diǎn)間距離公式得BC= ,DB= ,CD=

BC2+DB2=CD2,

∴∠CBD=90°,

tan BDC=.

∵∠POE+BCD=90°,BCD+BDC=90°,

∴∠POE=BDC.tanPOE=3.

P在直線y=3xy=-3x,故有兩種情況:

解得(0,0)()(-6,-18)();

,

解得(0,0)()(18,-54),

故可得出滿足條件的P點(diǎn)有一個(gè)(18,-54);

(3)B(4,2)可得直線OB解析式y=

OBl可得l的解析式為y=-2x+b1,(4,2)代入求出b1=10,

l的解析式為y=-2x+10,

DFlOBl可得DFOB,

∴可設(shè)DF解析式y= x+b2,D(24)代入得b2=3.

DF的解析式為y=x+3,

DF的解析式與l的解析式聯(lián)立可得:

解得:

,

DF= ,OB=

.DFOB

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線 ykxb(k≠0)過點(diǎn) F(0,1),與拋物線 相交于B、C 兩點(diǎn)

(1)如圖 1,當(dāng)點(diǎn) C 的橫坐標(biāo)為 1 時(shí),求直線 BC 的解析式;

(2)(1)的條件下,點(diǎn) M 是直線 BC 上一動(dòng)點(diǎn),過點(diǎn) M y 軸的平行線,與拋物線交于點(diǎn) D, 是否存在這樣的點(diǎn) M,使得以 M、DO、F 為頂點(diǎn)的四邊形為平行四邊形?若存在,求出點(diǎn) M 的坐標(biāo);若不存在,請說明理由;

(3)如圖 2,設(shè) B(mn)(m0),過點(diǎn) E(0,-1)的直線 lx 軸,BRl R,CSl S,連接 FR、FS.試判斷RFS 的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,ACB90°,點(diǎn)D,E分別在AB,AC上,CEBC,連接CD,將線段CD繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)90°后得CF,連接EF.

(1)補(bǔ)充完成圖形;

(2)EFCD,求證:BDC90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某餐廳中1張餐桌可坐6人,有以下兩種擺放方式:

1)對于方式一,4張桌子拼在一起可坐多少人?張桌子呢?對于方式二呢?

2)該餐廳有40張這樣的長方形桌子,按方式一每5張拼成一張大桌子,則40張桌子可拼成8張大桌子,共可坐多少人?按方式二呢?

3)在(2)中,若改成每8張拼成一張大桌子,則共可坐多少人?

4)一天中午,該餐廳來了98為顧客共同就餐,但餐廳中只有25張這樣的長方形桌子可用,若你是這家餐廳的經(jīng)理,你打算選擇哪種方式來擺餐桌呢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016四川省達(dá)州市如圖,P是等邊三角形ABC內(nèi)一點(diǎn),將線段AP繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到線段AQ,連接BQ.若PA=6,PB=8,PC=10,則四邊形APBQ的面積為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是

A.袋中有形狀、大小、質(zhì)地完全一樣的5個(gè)紅球和1個(gè)白球,從中隨機(jī)抽出一個(gè)球,一定是紅球

B.天氣預(yù)報(bào)“明天降水概率10%”,是指明天有10%的時(shí)間會(huì)下雨

C.某地發(fā)行一種福利彩票,中獎(jiǎng)率是千分之一,那么,買這種彩票1000張,一定會(huì)中獎(jiǎng)

D.連續(xù)擲一枚均勻硬幣,若5次都是正面朝上,則第六次仍然可能正面朝上

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中考前各校初三學(xué)生都要進(jìn)行體育測試,某次中考體育測試設(shè)有A、B兩處考點(diǎn),甲、乙、丙三名學(xué)生各自隨機(jī)選擇其中的一處進(jìn)行中考體育測試,請用表格或樹狀圖分析:

(1)求甲、乙、丙三名學(xué)生在同一處進(jìn)行體育測試的概率;

(2)求甲、乙、丙三名學(xué)生中至少有兩人在B處進(jìn)行體育測試的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知直角梯形ABCO中,∠AOC90°ABx軸,AB6,若以O為原點(diǎn),OA,OC所在直線為y軸和x軸建立如圖所示直角坐標(biāo)系,A(0,a)C(c,0)a,c滿足|a+c10|+0

1)求出點(diǎn)AB、C的坐標(biāo);

2)如圖2,若點(diǎn)M從點(diǎn)C出發(fā),以2單位/秒的速度沿CO方向移動(dòng),點(diǎn)N從原點(diǎn)出發(fā),以1單位/秒的速度沿OA方向移動(dòng),設(shè)M、N兩點(diǎn)同時(shí)出發(fā),且運(yùn)動(dòng)時(shí)間為t秒,當(dāng)點(diǎn)N從點(diǎn)O運(yùn)動(dòng)到點(diǎn)A時(shí),點(diǎn)M同時(shí)也停止運(yùn)動(dòng),在它們的移動(dòng)過程中,當(dāng)2SABN≤SBCM時(shí),求t的取值范圍:

3)如圖3,若點(diǎn)N是線段OA延長上的一動(dòng)點(diǎn),∠NCHkOCH,∠CNQkBNQ,其中k1,NQCJ,求的值(結(jié)果用含k的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AD=,FDA延長線上一點(diǎn),GCF上一點(diǎn),且ACG=AGCGAF=F=20°,則AB=  

查看答案和解析>>

同步練習(xí)冊答案