試題分析:本題是幾何綜合題,考查了旋轉(zhuǎn)變換中相似三角形、全等三角形的判定與性質(zhì).解題關(guān)鍵是:第一,善于發(fā)現(xiàn)幾何變換中不變的邏輯關(guān)系,即△BOF≌△COD或△BOF∽△COD;第二,熟練運用等腰直角三角形、等邊三角形、等腰三角形的相關(guān)性質(zhì).本題(1)(2)(3)問的解題思路一脈相承,由特殊到一般,有利于同學(xué)們進(jìn)行學(xué)習(xí)與探究.(1)如答圖②所示,連接OC、OD,證明△BOF≌△COD,即可得到BF=CD;
(2)如答圖③所示,連接OC、OD,可證明△BOF∽△COD,進(jìn)而求出相似比為
;(3)如答圖④所示,連接OC、OD,證明△BOF∽△COD,進(jìn)而可求相似比為
.
試題解析:
解:(1)猜想:BF=CD.理由如下:如答圖②所示,連接OC、OD.
∵△ABC為等腰直角三角形,點O為斜邊AB的中點,
∴OB=OC,∠BOC=90°.
∵△DEF為等腰直角三角形,點O為斜邊EF的中點,
∴OF=OD,∠DOF=90°.
∵∠BOF=∠BOC+∠COF=90°+∠COF,∠COD=∠DOF+∠COF=90°+∠COF,
∴∠BOF=∠COD.
∵在△BOF與△COD中,
∴△BOF≌△COD(SAS),
∴BF=CD.
(2)答:(1)中的結(jié)論不成立.
如答圖③所示,連接OC、OD.
∵△ABC為等邊三角形,點O為邊AB的中點,
∴
,∠BOC=90°
∵△DEF為等邊三角形,點O為邊EF的中點,
∴
,∠DOF=90°.
∴
∵∠BOF=∠BOC+∠COF=90°+∠COF,∠COD=∠DOF+∠COF=90°+∠COF,
∴∠BOF=∠COD.
在△BOF與△COD中,
∵
,∠BOF=∠COD,
∴△BOF∽△COD,
∴
.
(3)如答圖④所示,連接OC、OD.
∵△ABC為等邊三角形,點O為邊AB的中點,
∴
,∠BOC=90°
∵△DEF為等邊三角形,點O為邊EF的中點,
∴
,∠DOF=90°.
∴
∵∠BOF=∠BOC+∠COF=90°+∠COF,∠COD=∠DOF+∠COF=90°+∠COF,
∴∠BOF=∠COD.
在△BOF與△COD中,
∵
,∠BOF=∠COD,
∴△BOF∽△COD,
∴
.