拋物線y=ax2+bx+c(a>0)經(jīng)過點(diǎn)A(-3
3
,0
),B(
3
,0
)與y軸交于點(diǎn)C,設(shè)拋物線的頂點(diǎn)為D,在△BCD中,邊CD的高為h.
(1)若c=ka,求系數(shù)k的值;
(2)當(dāng)∠ACB=90°,求a及h的值;
(3)當(dāng)∠ACB≥90°時(shí),經(jīng)過探究、猜想請(qǐng)你直接寫出h的取值范圍.
(不要求書寫探究、猜想的過程)
(1)因?yàn)锳(-3
3
,0),B(
3
,0)在拋物線y=ax2+bx+c(a>0)上,
所以有,y=a(x+3
3
)(x-
3
)=a(x2+2
3
x-9
),
又因?yàn)閏=-9a
所以k=-9.

(2)由于∠ACB=90°時(shí),
∵OC⊥AB,
∴∠AOC=∠BOC=90°.
可得∠ACO=∠OBC.
∴△AOC△COB.
AO
OC
=
OC
OB
,
即OC2=OA•OB=3
3
×
3
=9.
∴OC=3.
∵C(0-3),由(1)知-9a,
∴a=
1
3

過D作DE⊥OC交y軸于點(diǎn)E,延長DC交x軸于點(diǎn)H,過B作BF⊥CH于點(diǎn)F.
即BF是邊DC的高h(yuǎn).
因?yàn)镈是拋物線的頂點(diǎn),
所以D(-
3
,-4
),
故OE=4,又OC=3,可得CE=1,DE=
3

易證△HCO△DCE,有
HO
DE
=
CO
EC
=
3
1
=3,
故OH=3DE=3
3
,BH=OH-OB=2
3

由于∠COH=90°,OC=3,OH=3
3
,由勾股定理知CH=6,有∠OHC=30°,
又因?yàn)樵赗t△BHF中,BH=2
3
,
所以BF=
3
,即h=
3


(3)當(dāng)∠ACB≥90°時(shí),猜想0<h≤
3
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線與x軸交于點(diǎn)A(-2,0),B(4,0),與y軸交于點(diǎn)C(0,8),
(1)試求拋物線的解析式;
(2)設(shè)點(diǎn)D是該拋物線的頂點(diǎn),試求直線CD的解析式;
(3)若直線CD交x軸于點(diǎn)E,過點(diǎn)B作x軸的垂線,交直線CD于點(diǎn)F,將拋物線沿其對(duì)稱軸上、下平移,使拋物線與線段EF總有公共點(diǎn).試探究:拋物線向上最多可平移多少個(gè)單位長度?向下最多可平移多少個(gè)單位長度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則這個(gè)二次函數(shù)的表達(dá)式是y=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某幢建筑物,從10米高的窗口A用水管和向外噴水,噴的水流呈拋物線,拋物線所在平面與墻面垂直(如圖),如果拋物線的最高點(diǎn)M離墻1米,離地面
40
3
米,求水流下落點(diǎn)B離墻距離OB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形ABCD的邊長為4,點(diǎn)P是AB上不與A、B重合的任意一點(diǎn),作PQ⊥DP,Q在BC上,設(shè)AP=x,BQ=y,
(1)求y與x之間的函數(shù)關(guān)系式,并指出自變量x的取值范圍;
(2)求函數(shù)圖象的頂點(diǎn)坐標(biāo),并作出大致圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線y=
1
2
x+
3
2
與直線y=x交于點(diǎn)A,點(diǎn)B在直線y=
1
2
x+
3
2
上,∠BOA=90°.拋物線y=ax2+bx+c過點(diǎn)A,O,B,頂點(diǎn)為點(diǎn)E.
(1)求點(diǎn)A,B的坐標(biāo);
(2)求拋物線的函數(shù)表達(dá)式及頂點(diǎn)E的坐標(biāo);
(3)設(shè)直線y=x與拋物線的對(duì)稱軸交于點(diǎn)C,直線BC交拋物線于點(diǎn)D,過點(diǎn)E作FEx軸,交直線AB于點(diǎn)F,連接OD,CF,CF交x軸于點(diǎn)M.試判斷OD與CF是否平行,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=ax2+bx+8(a≠0)的圖象與x軸交與A,B兩點(diǎn),與y軸交與點(diǎn)C,已知點(diǎn)A的坐標(biāo)為(-2,0),sin∠ABC=
2
5
5
,點(diǎn)D是拋物線的頂點(diǎn),直線DC交x軸于點(diǎn)E.
(1)求拋物線的解析式及其頂點(diǎn)D的坐標(biāo);
(2)在直線CD上是否存在一點(diǎn)Q,使以B,C,Q為頂點(diǎn)的三角形是等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)點(diǎn)P是直線y=2x-4上一點(diǎn),過點(diǎn)P作直線PM垂直于直線CD,垂足為M,若∠MPO=75°,求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,已知:拋物線y=
1
2
x2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,經(jīng)過B、C兩點(diǎn)的直線是y=
1
2
x-2,連接AC.
(1)B、C兩點(diǎn)坐標(biāo)分別為B(______,______)、C(______,______),拋物線的函數(shù)關(guān)系式為______;
(2)判斷△ABC的形狀,并說明理由;
(3)若△ABC內(nèi)部能否截出面積最大的矩形DEFC(頂點(diǎn)D、E、F、G在△ABC各邊上)?若能,求出在AB邊上的矩形頂點(diǎn)的坐標(biāo);若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形ABCD的邊長是4,E是AB邊上一點(diǎn)(E不與A、B重合),F(xiàn)是AD的延長線上一點(diǎn),DF=2BE.四邊形AEGF是句型,其面積y隨BE的長x的變化而變化且構(gòu)成函數(shù).
(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)若上述(1)中是二次函數(shù),請(qǐng)用配方法把它轉(zhuǎn)化成y=a(x-h)2+k的形式,并指出當(dāng)x取何值時(shí),y取得最大(或最。┲,該值是多少?
(3)直接寫出拋物線與x軸交點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案