【題目】如圖,已知正方形ABCD的邊長為5,點E,F分別在AD,DC上,AE=DF=2,BE與AF相交于點G,點H為BF的中點,連接GH,則GH的長為( 。
A.2B.4C.D.
科目:初中數(shù)學 來源: 題型:
【題目】小明調(diào)查了本校九年級300名學生到校的方式,根據(jù)調(diào)査結(jié)果繪制出統(tǒng)計圖的一部分如圖:
(1)補全條形統(tǒng)計圖;
(2)求扇形統(tǒng)計圖中表示“步行”的扇形圓心角的度數(shù);
(3)請估計在全校1200名學生中乘公交的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為了了解本校學生的預(yù)防新型冠狀病毒知識的普及情況,從該校2000名學生中隨機抽取了部分學生進行調(diào)查,調(diào)查結(jié)果按了解程度分為“非常了解”、“了解”、“了解較少”、“不了解”四類,并將調(diào)査結(jié)果繪制出以下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題:
(1)本次調(diào)查的學生共有多少人?
(2)估計該校2000名學生中“了解”的人數(shù)約有多少人?
(3)若“不了解”的4人中有甲、乙兩名男生,丙、丁兩名女生,從這4人中隨機抽取兩人去重新參加預(yù)防新冠病毒如識培訓,請用畫樹狀圖或列表的方法,求恰好抽到2名男生的概率
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,點P為∠MON的平分線上一點,以P點為頂點的角的兩邊分別與射線OM,ON交于A,B兩點,如果∠APB繞點P旋轉(zhuǎn)時始終滿足OA·OB=OP2,我們就把∠APB叫作∠MON的智慧角.
(1)如圖②,已知∠MON=90°,點P為∠MON的平分線上一點,以點P為頂點的角的兩邊分別與射線OM,ON交于A,B兩點,且∠APB=135°,求證:∠APB是∠MON的智慧角;
(2)如圖①,已知∠MON=α(0°<α<90°),OP=2,若∠APB是∠MON的智慧角,連接AB,用含α的式子分別表示∠APB的度數(shù)和△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,CE是∠DCB的角平分線,且交AB于點E,DB與CE相交于點O,
(1)求證:△EBC是等腰三角形;
(2)已知:AB=7,BC=5,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點D在AB的延長線上,C、E是⊙O上的兩點,CE=CB,∠BCD=∠CAE,延長AE交BC的延長線于點F.
(1)求證:CD是⊙O的切線;
(2)求證:CE=CF;
(3)若BD=1,CD=,求弦AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線l的表達式為y=x,點A1的坐標為(1,0),以O(shè)為圓心,OA1為半徑畫弧,與直線l交于點C1,記長為m1;過點A1作A1B1垂直x軸,交直線l于點B1,以O(shè)為圓心,OB1為半徑畫弧,交x軸于C2,記的長為m2;過點B1作A2B1垂直l,交x軸于點A2,以O(shè)為圓心,OA2為半徑畫弧,交直線l于C3,記的長為m3…按照這樣規(guī)律進行下去,mn的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,△ABC和△ADE均為等腰三角形,AB=AC=5,AD=AE=2,且∠BAC=∠DAE=120°,把△ADE繞點A在平面內(nèi)自由旋轉(zhuǎn).如圖,連接BD,CD,CE,點M,P,N分別為DE,DC,BC的中點,連接MP,PN,MN,則△PMN的面積最大值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】水壩的橫截面是梯形ABCD,現(xiàn)測得壩頂DC=4 m,坡面AD的坡度i為1:1,坡面BC的坡角β為60°,壩高3m,()求:
(1)壩底AB的長(精確到0.1);
(2)水利部門為了加固水壩,在保持壩頂CD不變的情況下降低AD的坡度(如圖),使新坡面DE的坡度i為,原水壩底部正前方2.5m處有一千年古樹,此加固工程對古樹是否有影響?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com