【題目】如圖,ΔABC中,點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)C的坐標(biāo)為(4,3),點(diǎn)B的坐標(biāo)為(3,1),如果要使ΔABD與ΔABC全等,求點(diǎn)D的坐標(biāo).
【答案】滿(mǎn)足條件的點(diǎn)D的坐標(biāo)有3個(gè):(4,-1);(-1,-1);(-1,3).
【解析】
因?yàn)?/span>△ABD與△ABC有一條公共邊AB,故本題應(yīng)從點(diǎn)D在AB的上邊、點(diǎn)D在AB的下邊兩種情況入手進(jìn)行討論,根據(jù)軸對(duì)稱(chēng)的性質(zhì)計(jì)算即可得出答案.
解:∵△ABD與△ABC有一條公共邊AB,
∴當(dāng)點(diǎn)D在AB的下邊時(shí),點(diǎn)D有兩種情況:
①點(diǎn)D1和點(diǎn)C關(guān)于直線(xiàn)AB對(duì)稱(chēng)時(shí),此時(shí)點(diǎn)D1坐標(biāo)是(4,1);
②點(diǎn)D2和點(diǎn)D1關(guān)于直線(xiàn)x=1.5對(duì)稱(chēng)時(shí),此時(shí)點(diǎn)D2坐標(biāo)為(1,1);
當(dāng)點(diǎn)D在AB的上邊時(shí),點(diǎn)D3和點(diǎn)C關(guān)于直線(xiàn)x=1.5對(duì)稱(chēng),此時(shí)點(diǎn)D3坐標(biāo)為(1,3),
綜上,滿(mǎn)足條件的點(diǎn)D的坐標(biāo)有3個(gè):(4,1),(1,1),(1,3).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,數(shù)軸上有三個(gè)點(diǎn)、、,表示的數(shù)分別是、、3,請(qǐng)回答:
(1)若使、兩點(diǎn)的距離與、兩點(diǎn)的距離相等,則需將點(diǎn)向左移動(dòng)_________個(gè)單位長(zhǎng)度;
(2)點(diǎn)、、開(kāi)始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)和點(diǎn)分別以每秒2個(gè)單位長(zhǎng)度和5個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),運(yùn)動(dòng)秒鐘后:
①點(diǎn)、、表示的數(shù)分別是________、________、________(用含的式子表示);
②若點(diǎn)與點(diǎn)之間的距離表示為,點(diǎn)與點(diǎn)之間的距離表示為.試問(wèn):的值是否隨著時(shí)間的變化而改變?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求出值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AB∥CD,解決下列問(wèn)題:
(1)如圖①,寫(xiě)出∠ABE、∠CDE和∠E之間的數(shù)量關(guān)系: ;
(2)如圖②,BP、DP分別平分∠ABE、∠CDE,若∠E=100°,求∠P的度數(shù);
(3)如圖③,若∠ABP=∠ABE,∠CDP=∠CDE,試寫(xiě)出∠P與∠E的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,∠ACB=90°,過(guò)C點(diǎn)作CD⊥AB,垂足為D,且AD=m,BD= n,AC2:BC2=2:1,又關(guān)于x的方程x2-2(n-1)x+m2-12=0,兩實(shí)數(shù)根的差的平方小于192,
求:m,n為整數(shù)時(shí),一次函數(shù)y=mx+n的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在學(xué)習(xí)了數(shù)軸后,小亮決定對(duì)數(shù)軸進(jìn)行變化應(yīng)用:
(1)應(yīng)用一:已知點(diǎn)在數(shù)軸上表示為-2,數(shù)軸上任意一點(diǎn)表示的數(shù)為,則兩點(diǎn)的距離可以表示為 ;應(yīng)用這個(gè)知識(shí),請(qǐng)寫(xiě)出當(dāng) 時(shí), 有最小值為 .
(2)應(yīng)用二:從數(shù)軸上取下一個(gè)單位長(zhǎng)度的線(xiàn)段,第一次剪掉原長(zhǎng)的,第二次剪掉剩下的,依此類(lèi)推,每次都剪掉剩下的,則剪掉4次后剩下線(xiàn)段長(zhǎng)度為 ;應(yīng)用這個(gè)原理,請(qǐng)計(jì)算:;
(3)應(yīng)用三:如圖,將一根拉直的細(xì)線(xiàn)看作數(shù)軸,一個(gè)三邊長(zhǎng)分別為,,的三角形的頂點(diǎn)與原點(diǎn)重合,邊在數(shù)軸正半軸上,將數(shù)軸正半軸的線(xiàn)沿的順序依次纏繞在三角形的邊上,負(fù)半軸的線(xiàn)沿的順序依次纏繞在三角形的邊上.
①如果正半軸的線(xiàn)纏繞了3圈,負(fù)半軸的線(xiàn)纏繞了5圈,求繞在點(diǎn)上的所有數(shù)之和;
②如果正半軸的線(xiàn)不變,將負(fù)半軸的線(xiàn)拉長(zhǎng)一倍,即原線(xiàn)上的點(diǎn)-2的位置對(duì)應(yīng)著拉長(zhǎng)后的數(shù)-1,并將三角形向正半軸平移一個(gè)單位后再開(kāi)始繞,求繞在點(diǎn)且絕對(duì)值不超過(guò)60的所有數(shù)之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)與兩坐標(biāo)軸分別交于、兩點(diǎn),將線(xiàn)段分成等份,分點(diǎn)分別為,,P3,
,… ,過(guò)每個(gè)分點(diǎn)作軸的垂線(xiàn)分別交直線(xiàn)于點(diǎn),,,… ,用,,,…,分別表示,,…,的面積,則___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以的直角邊為直徑作交斜邊于點(diǎn),過(guò)圓心作,交于點(diǎn),連接.
(1)判斷與的位置關(guān)系并說(shuō)明理由;
(2)求證:;
(3)若,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)A在第一象限,點(diǎn)B,C的坐標(biāo)分別為(2,1),(6,1),∠BAC=90°,AB=AC,直線(xiàn)AB交y軸于點(diǎn)P,若△ABC與△A′B′C′關(guān)于點(diǎn)P成中心對(duì)稱(chēng),則點(diǎn)A′的坐標(biāo)為( )
A. (﹣4,﹣5) B. (﹣5,﹣4) C. (﹣3,﹣4) D. (﹣4,﹣3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AM∥CN,點(diǎn)B為平面內(nèi)一點(diǎn),AB⊥BC于B
(1)如圖1,直接寫(xiě)出∠A和∠C之間的數(shù)量關(guān)系;
(2)如圖2,過(guò)點(diǎn)B作BD⊥AM于點(diǎn)D,求證:∠ABD=∠C;
(3)如圖3,在(2)問(wèn)的條件下,點(diǎn)E.F在DM上,連接BE.BF.CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠ABF=2∠ABE,求∠EBC的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com