【題目】在△ABC中,AB,BC的垂直平分線相交于三角形內(nèi)一點(diǎn)O,下列結(jié)論中,錯誤的是( )
A.點(diǎn)O在AC的垂直平分線上
B.△AOB,△BOC,△COA都是等腰三角形
C.∠OAB+∠OBC+∠OCA=90°
D.點(diǎn)O到AB,BC,CA的距離相等
【答案】D
【解析】解:A、連接AO、BO、CO,
∵AB、BC的垂直平分線相交于三角形內(nèi)一點(diǎn)O,
∴AO=BO,BO=CO,
∴AO=CO,
∴點(diǎn)O在AC的垂直平分線上,
所以選項(xiàng)A正確;
B、∵AO=BO,BO=CO,AO=CO,
∴△AOB、△BOC、△COA都是等腰三角形,
所以選項(xiàng)B正確;
C、∵AO=BO,BO=CO,AO=CO,
∴∠OAB=∠ABO,∠OBC=∠OCB,∠OAC=∠OCA,
∵∠BAC+∠ABC+∠ACB=180°,
∴∠OAB+∠OBC+∠OCA=90°,
故選項(xiàng)C正確;
D、∵點(diǎn)O是三邊垂直平分線的交點(diǎn),
∴OA=OB=OC,
但點(diǎn)O到AB、BC、CA的距離不一定相等;
所以選項(xiàng)D錯誤;
本題選擇錯誤的,
故選D.
根據(jù)垂直平分線的性質(zhì)得:O也是AC垂直平分線上的點(diǎn),則O到三個頂點(diǎn)的距離相等,可以得△AOB、△BOC、△COA都是等腰三角形,且根據(jù)等邊對等角得:∠OAB=∠ABO,∠OBC=∠OCB,∠OAC=∠OCA,再由三角形內(nèi)角和定理得:∠OAB+∠OBC+∠OCA=90°;
三角形的角平分線的交點(diǎn)到三邊的距離相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的邊長為, 、、、分別是、、、邊上的動點(diǎn)(不含端點(diǎn)),且、均過正方形的中心.
(1)填空: (“>”、“<”、“=”);
(2)當(dāng)四邊形為矩形時,請問線段與應(yīng)滿足什么數(shù)量關(guān)系;
(3)當(dāng)四邊形為正方形時, 與交于點(diǎn),求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的方程2x2﹣ax+a﹣2=0有兩個相等的實(shí)根,則a的值是( )
A.﹣4
B.4
C.4或﹣4
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)A(m,n﹣2)與點(diǎn)B(﹣2,n)關(guān)于原點(diǎn)對稱,則點(diǎn)A的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ABC與∠ACB的平分線交于點(diǎn)F,過點(diǎn)F作DE∥BC交AB于點(diǎn)D,交AC于點(diǎn)E,那么下列結(jié)論:
①△BDF和△CEF都是等腰三角形;
②DE=BD+CE;
③△ADE的周長等于AB與AC的和;
④BF=CF.
其中正確的有( )
A.①②③
B.①②③④
C.①②
D.①
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解答
(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m,CE⊥直線m,垂足分別為點(diǎn)D,E.
證明:DE=BD+CE.
(2)如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D,A,E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
(3)拓展與應(yīng)用:如圖(3),D,E是D,A,E三點(diǎn)所在直線m上的兩動點(diǎn)(D,A,E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD,CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com