【題目】如圖,點 是以 為直徑的 上一點, 于點 ,過點 的切線,與 的延長線相交于點 , 的中點,連接 并延長與 相交于點 ,延長 的延長線相交于點 ,且

(1)求證:BF=EF;

(2);

(3)的半徑r.

【答案】(1)證明見解析(2)(3)

【解析】

1)根據(jù)ADEB得到CAG∽△CEF,△CGD∽△CFB根據(jù)相似三角形對應(yīng)邊成比例即可得到結(jié)論

2求出AH,FH的值,根據(jù)tanP=tanAFH===即可解決問題;

3RtADO中利用勾股定理即可求出半徑

(1)∵EB 是切線,ADBC

∴∠EBC=∠ADC=90°,

ADEB,

∴△CAG∽△CEF,△CGD∽△CFB,

AG=GD,

EF=FB

(2)連接AB過點FFHAGAG于點H

BC 是直徑

∴∠BAC=∠BAE=90°

EF=FB,

FA=FB=FE=FG=3(直角三角形斜邊上的中線等于斜邊的一半)

FA=FG,FHAG,

AH=HG

∵∠FBD=∠BDH=∠FHD=90°,

四邊形 FBDH 是矩形,

FB=DH=3

AG=GD

AH=HG=1,GD=2,FH=

FHPD

∴∠AFH=∠APD,

tanP=tanAFH=

(3)設(shè)半徑為 r, RtADO 中,

,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,對稱軸為直線x=1的拋物線y=-x2+bx+cx軸交于點A和點B,與y軸交于點C,且點B的坐標(biāo)為(-1,0

1)求拋物線的解析式;

2)點D的坐標(biāo)為(0,1),點P是拋物線上的動點,若△PCD是以CD為底的等腰三角形,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市紅領(lǐng)服飾有限公司生產(chǎn)了一款夏季服裝,通過實驗商店和網(wǎng)上商店兩種途徑進(jìn)行銷售,銷售一段時間后,該公司對這種商品的銷售情況,進(jìn)行了為期30天的跟蹤調(diào)查,其中實體商店的日銷售量y1(百件)與時間t(t為整數(shù),單位:天)的部分對應(yīng)值如表所示:

時間t(天)

0

5

10

15

20

25

30

日銷售量yt(百件)

0

25

40

45

40

25

0

(1)請你在一次函數(shù)、二次函數(shù)和反比例函數(shù)中,選擇合適的函數(shù)能反映y1t的變化規(guī)律,并求出y1t的函數(shù)關(guān)系式及自變量t的取值范圍;

(2)網(wǎng)上商店的日銷售量y2(百件)與時間t(t為整數(shù),單位:天)的關(guān)系如圖所示.求y2t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;

(3)在跟蹤調(diào)查的30天中,設(shè)實體商店和網(wǎng)上商店的日銷售總量為y(百件),求yt的函數(shù)關(guān)系式;當(dāng)t為何值時,日銷售總量y達(dá)到最大,并求出此時的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)yax+ba,b為常數(shù),a≠0)的圖象與x軸,y軸分別交于點AB,且與反比例函數(shù)yk為常數(shù),k≠0)的圖象在第二象限內(nèi)交于點C,作CDx軸于,若OAODOB3

1)求一次函數(shù)與反比例函數(shù)的解析式;

2)觀察圖象直接寫出不等式0ax+b的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點P在一次函數(shù)y=kx+bk,b為常數(shù),且k0b0)的圖象上,將點P向左平移1個單位,再向上平移2個單位得到點Q,點Q也在該函數(shù)y=kx+b的圖象上.

1k的值是

2)如圖,該一次函數(shù)的圖象分別與x軸、y軸交于AB兩點,且與反比例函數(shù)y=圖象交于C,D兩點(點C在第二象限內(nèi)),過點CCE⊥x軸于點E,記S1為四邊形CEOB的面積,S2△OAB的面積,若=,則b的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店欲購進(jìn) A、B 兩種商品,若購進(jìn) A 種商品 5 件和 B 種商品 4 件需 300 元;購進(jìn) A 種商品 6 件和 B 種商 品 8 件需 440 元.

1)求 A、B 兩種商品每件的進(jìn)價分別為多少元?

2)若該商店每銷售 1A 種商品可獲利 8 元,每銷售 1B 種商品可獲利 6 元,該商店準(zhǔn)備購進(jìn) A、B 兩種商 品共 50 件,且這兩種商品全部售出后總獲利超過 344 元,則至少購進(jìn)多少件 A 商品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD,對角線AC,BD相交于點O,下列條件不能判定這個四邊形是平行四邊形的是(  ).

A. ABDC,ADBCB. AB=DC,AD=BC

C. AO=CO,BO=DOD. ABDC,AD=BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)以致用:問題1:怎樣用長為的鐵絲圍成一個面積最大的矩形?

小學(xué)時我們就知道結(jié)論:圍成正方形時面積最大,即圍成邊長為的正方形時面積最大為.請用你所學(xué)的二次函數(shù)的知識解釋原因.

思考驗證:問題2:怎樣用鐵絲圍一個面積為且周長最小的矩形?

小明猜測:圍成正方形時周長最。

為了說明其中的道理,小明翻閱書籍,找到下面的結(jié)論:

均為正實數(shù))中,若為定值,則,只有當(dāng)時,有最小值

思考驗證:證明:、均為正實數(shù))

請完成小明的證明過程:

證明:對于任意正實數(shù)

  

解決問題:

1)若,則  (當(dāng)且僅當(dāng)  時取;

2)運用上述結(jié)論證明小明對問題2的猜測;

3)填空:當(dāng)時,的最小值為  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖像如圖所示.

1)當(dāng)時,說明這個二次函數(shù)的圖像與x軸必有兩個交點;

2)如圖情況下,若,求點C的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案