【題目】將紙片△ABC沿DE折疊使點A落在A′處的位置.
(1)如果A′落在四邊形BCDE的內(nèi)部(如圖1),∠A′與∠1+∠2之間存在怎樣的數(shù)量關(guān)系?并說明理由.
(2)如果A′落在四邊形BCDE的BE邊上,這時圖1中的∠1變?yōu)?/span>0°角,則∠A′與∠2之間的關(guān)系是 .
(3)如果A′落在四邊形BCDE的外部(如圖2),這時∠A′與∠1、∠2之間又存在怎樣的數(shù)量關(guān)系?并說明理由.
【答案】(1)2∠A=∠1+∠2,理由見解析;(2)2∠A=∠2;(3)2∠A=∠2﹣∠1,理由見解析.
【解析】
試題分析:(1)根據(jù)折疊性質(zhì)得出∠AED=∠A′ED,∠ADE=∠A′DE,根據(jù)三角形內(nèi)角和定理得出∠AED+∠ADE=180°﹣∠A,代入∠1+∠2=180°+180°﹣2(∠AED+∠ADE)求出即可;
(2)根據(jù)三角形外角性質(zhì)得出∠DME=∠A′+∠1,∠2=∠A+∠DME,代入即可求出答案.
解:(1)圖1中,2∠A=∠1+∠2,
理由是:∵延DE折疊A和A′重合,
∴∠AED=∠A′ED,∠ADE=∠A′DE,
∵∠AED+∠ADE=180°﹣∠A,∠1+∠2=180°+180°﹣2(∠AED+∠ADE),
∴∠1+∠2=360°﹣2(180°﹣∠A)=2∠A;
(2)2∠A=∠2,如圖
∠2=∠A+∠EA′D=2∠A,
故答案為:2∠A=∠2;
(3)如圖2,2∠A=∠2﹣∠1,
理由是:∵延DE折疊A和A′重合,
∴∠A=∠A′,
∵∠DME=∠A′+∠1,∠2=∠A+∠DME,
∴∠2=∠A+∠A′+∠1,
即2∠A=∠2﹣∠1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等腰三角形的腰和底的長分別是一元二次方程x2﹣6x+8=0的根,則該三角形的周長為( )
A.8 B.10 C.8或10 D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,過一點分別作坐標(biāo)軸的垂線,若與坐標(biāo)軸圍成矩形的周長與面積相等,則這個點叫做和諧點.例如,圖中過點P分別作x軸,y軸的垂線,與坐標(biāo)軸圍成矩形OAPB的周長與面積相等,則點P是和諧點.
(1)點M(3,2) 和諧點(填“是”或“不是”);
(2)若點P(a,6)是和諧點,a的值為 ;
(3)若(2)中和諧點P(a,6)在y=﹣4x+m上,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,M為BC上一點,F(xiàn)是AM的中點,EF⊥AM,垂足為F,交AD的延長線于點E,交DC于點N.
(1)求證:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面直角坐標(biāo)系內(nèi),將函數(shù)y=2x2+4x﹣3的圖象向右平移2個單位,再向下平移1個單位得到圖象的頂點坐標(biāo)是( )
A.(﹣3,﹣6) B.(1,﹣4)
C.(1,﹣6) D.(﹣3,﹣4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個正方體的六個面上分別標(biāo)有﹣1,﹣2,﹣3,﹣4,﹣5,﹣6中的一個數(shù),各個面上所標(biāo)數(shù)字都不相同,如圖是這個正方體的三種放置方法,三個正方體下底面所標(biāo)數(shù)字分別是a,b,c,則a+b+c+abc= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在四邊形ABCD中,DC∥AB,AD=BC,BD平分∠ABC.
(1)求證:AD=DC;
(2)如圖2,在上述條件下,若∠A=∠ABC=60°,過點D作DE⊥AB,過點C作CF⊥BD,垂足分別為E、F,連接EF.判斷△DEF的形狀并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用“☆”定義一種新運算:對于任意有理數(shù)a和b,規(guī)定a☆b=ab2+2ab+a.
如:1☆3=1×32+2×1×3+1=16.
(1)求(﹣2)☆3的值;
(2)若(☆3)☆(﹣)=8,求a的值;
(3)若2☆x=m,(x)☆3=n(其中x為有理數(shù)),試比較m,n的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com