如圖,直線y=與x軸交于點A,與y軸交于點C,以AC為直徑作⊙M,點是劣弧AO上一動點(點與不重合).拋物線y=-經(jīng)過點A、C,與x軸交于另一點B,

(1)求拋物線的解析式及點B的坐標(biāo);
(2)在拋物線的對稱軸上是否存在一點P,是︱PA—PC︱的值最大;若存在,求出點P的坐標(biāo);若不存在,請說明理由。
(3)連于點,延長,使,試探究當(dāng)點運動到何處時,直線與⊙M相切,并請說明理由.
(1)  B(1,0)
(2)P(-1,)
(3)當(dāng)D運動到劣弧AO的中點時,直線AG與⊙M相切.證明見解析

試題分析:(1)先求出A、C點坐標(biāo),再代入y=-即可求出b、c的值,從而確定拋物線的解析式,由于點A、B關(guān)于拋物線的對稱軸對稱,從而可求出點B的坐標(biāo).
(2)連接BC并延長交拋物線對稱軸于一點,這一點就是點P.
(3)當(dāng)D運動到劣弧AO的中點時,直線AG與⊙M相切.
試題解析:(1)解:由 得A(-3,0),C(0, )
將其代入拋物線解析式得: 解得:

∵對稱軸是x=-1
∴由對稱性得B(1,0)
(2)解:延長BC與對稱軸的交點就是點P
由B(1,0),C(0,)求得直線BC解析式為: 
當(dāng)x=-1時,y= 
∴P(-1, )
(3)結(jié)論:當(dāng)D運動到劣弧AO的中點時,直線AG與⊙M相切.
證明:∵在RT△AOC中,tan∠CAO=,
∴∠CAO=30°,∠ACO=60°,
∵點D是劣弧AO的中點,
∴弧AD=弧OD
∴∠ACD=∠DCO=30°,
∴OF=OCtan30°=1,∠CF O=60°,
∴△AFG中,AF=3-1=2,∠AFG=∠CFO=60°,
∵FG=2,
∴△AFG為等邊三角形,
∴∠GAF=60°,
∴∠CAG=30°+60°=90°,
∴AC⊥AG,
∴AG為⊙M的切線.
考點: 1. 二次函數(shù)綜合題;2.直線與圓的位置關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在平面直角坐標(biāo)系xOy中,矩形OABC的邊長OA、OC分別為12cm、6cm,點A、C分別在y軸的負(fù)半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過點A、B,且18a+c=0.

(1)求拋物線的解析式.
(2)如果點P由點A開始沿AB邊以1cm/s的速度向終點B移動,同時點Q由點B開始沿BC邊以2cm/s的速度向終點C移動.
①移動開始后第t秒時,設(shè)△PBQ的面積為S,試寫出S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍.
②當(dāng)S取得最大值時,在拋物線上是否存在點R,使得以P、B、Q、R為頂點的四邊形是平行四邊形?如果存在,求出R點的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,A、B為x軸上兩點,C、D為y軸上的兩點,經(jīng)過點A、C、B的拋物線的一部分C1與經(jīng)過點A、D、B的拋物線的一部分C2組成一條封閉曲線,我們把這條封閉曲線稱為“蛋線”,已知點C的坐標(biāo)為(0,-),點M是拋物線C2:y=mx2-2mx-3m(m<0)的頂點.

(1)求A、B兩點的坐標(biāo);
(2)“蛋線”在第四象限內(nèi)是否存在一點P,使得∆PBC的面積最大?若存在,求出∆PBC面積的最大值;若不存在,請說明理由;
(3)當(dāng)∆BDM為直角三角形時,請直接寫出m的值.(參考公式:在平面直角坐標(biāo)系中,若M(x1,y1),N(x2,y2),則M、N兩點間的距離為MN=.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

西寧中心廣場有各種音樂噴泉,其中一個噴水管噴水的最大高度為3米,此時距噴水管的水平距離為米,在如圖所示的坐標(biāo)系中,這個噴泉的函數(shù)關(guān)系式是(  )
A.y=-+3B.y=-3+3
C.y=-12+3D.y=-12+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

把二次函數(shù)y=(x-1)2+2的圖象繞原點旋轉(zhuǎn)180°后得到的圖象的解析式為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如果一條拋物線軸有兩個交點,那么以該拋物線的頂點和這兩個交點為頂點的三角形稱為這條拋物線的“拋物線三角形”.
(1)“拋物線三角形”一定是       三角形;
(2)如圖,△OAB是拋物線的“拋物線三角形”,是否存在以原點O為對稱中心的矩形ABCD?若存在,求出過O、C、D三點的拋物線的表達(dá)式;若不存在,說明理由;
(3)在(2)的條件下,若以點E為圓心,r為半徑的圓與線段AD只有一個公共點,求出r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某經(jīng)銷商代理銷售一種手機(jī),按協(xié)議,每賣出一部手機(jī)需另交品牌代理費100元,已知該種手機(jī)每部進(jìn)價800元,銷售單價為1200元時,每月能賣出100部,市場調(diào)查發(fā)現(xiàn),若每部手機(jī)每讓利50元,則每月可多售出40部.
(1)若每月要獲取36000元利潤,求讓利價
(利潤=銷售收入-進(jìn)貨成本-品牌代理費)
(2)設(shè)讓利x元,月利潤為y元,寫出y與x的函數(shù)關(guān)系式,并求讓利多少元時,月利潤最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形ABCD的兩邊長AB=18 cm,AD=4 cm,點P、Q分別從A、B同時出發(fā),P在邊AB上沿AB方向以每秒2 cm的速度勻速運動,Q在邊BC上沿BC方向以每秒1 cm的速度勻速運動.設(shè)運動時間為x秒,△PBQ的面積為y(cm2).

(1)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)求△PBQ的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

直線y=ax+c與拋物線y=ax2+c的圖象畫在同一個直角坐標(biāo)系中,可能是下面的

查看答案和解析>>

同步練習(xí)冊答案