【題目】如圖,拋物線經(jīng)過A(﹣1,0),B(5,0),C(0,- )三點(diǎn).
(1)求拋物線的解析式;
(2)在拋物線的對(duì)稱軸上有一點(diǎn)P,使PA+PC的值最小,求點(diǎn)P的坐標(biāo);
(3)點(diǎn)M為x軸上一動(dòng)點(diǎn),在拋物線上是否存在一點(diǎn)N,使以A,C,M,N四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,求點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】
(1)
解:設(shè)拋物線的解析式為y=ax2+bx+c(a≠0),
∵A(﹣1,0),B(5,0),C(0,- )三點(diǎn)在拋物線上,
∴ ,
解得 .
∴拋物線的解析式為:y= x2﹣2x﹣
(2)
解:∵拋物線的解析式為:y= x2﹣2x﹣ ,
∴其對(duì)稱軸為直線x=﹣ =﹣ =2,
連接BC,如圖1所示,
∵B(5,0),C(0,﹣ ),
∴設(shè)直線BC的解析式為y=kx+b(k≠0),
∴ ,
解得 ,
∴直線BC的解析式為y= x﹣ ,
當(dāng)x=2時(shí),y=1﹣ =﹣ ,
∴P(2,﹣ )
(3)
解:存在.
如圖2所示,
①當(dāng)點(diǎn)N在x軸下方時(shí),
∵拋物線的對(duì)稱軸為直線x=2,C(0,﹣ ),
∴N1(4,﹣ );
②當(dāng)點(diǎn)N在x軸上方時(shí),
如圖,過點(diǎn)N2作N2D⊥x軸于點(diǎn)D,
在△AN2D與△M2CO中,
∴△AN2D≌△M2CO(ASA),
∴N2D=OC= ,即N2點(diǎn)的縱坐標(biāo)為 .
∴ x2﹣2x﹣ = ,
解得x=2+ 或x=2﹣ ,
∴N2(2+ , ),N3(2﹣ , ).
綜上所述,符合條件的點(diǎn)N的坐標(biāo)為(4,﹣ ),(2+ , )或(2﹣ , ).
【解析】(1)設(shè)拋物線的解析式為y=ax2+bx+c(a≠0),再把A(﹣1,0),B(5,0),C(0,- )三點(diǎn)代入求出a、b、c的值即可;(2)因?yàn)辄c(diǎn)A關(guān)于對(duì)稱軸對(duì)稱的點(diǎn)B的坐標(biāo)為(5,0),連接BC交對(duì)稱軸直線于點(diǎn)P,求出P點(diǎn)坐標(biāo)即可;(3)分點(diǎn)N在x軸下方或上方兩種情況進(jìn)行討論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直立于地面上的電線桿AB,在陽(yáng)光下落在水平地面和坡面上的影子分別是BC、CD,測(cè)得BC=6米,CD=4米,∠BCD=150°,在D處測(cè)得電線桿頂端A的仰角為30°,試求電線桿的高度(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=2,且拋物線經(jīng)過A(﹣1,0),C(0,﹣5)兩點(diǎn),與x軸交于點(diǎn)B.
(1)若直線y=mx+n經(jīng)過B、C兩點(diǎn),求直線BC和拋物線的解析式;
(2)設(shè)點(diǎn)P為拋物線上的一個(gè)動(dòng)點(diǎn),連接PB、PC,若△BPC是以BC為直角邊的直角三角形,求此時(shí)點(diǎn)P的坐標(biāo);
(3)在拋物線上BC段有另一個(gè)動(dòng)點(diǎn)Q,以點(diǎn)Q為圓心作⊙Q,使得⊙Q與直線BC相切,在運(yùn)動(dòng)的過程中是否存在一個(gè)最大⊙Q?若存在,請(qǐng)直接寫出最大⊙Q的半徑;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,邊長(zhǎng)為2的正方形OABC的頂點(diǎn)A、C分別在x軸、y軸的正半軸上,二次函數(shù)y=﹣ x2+bx+c的圖象經(jīng)過B、C兩點(diǎn).
(1)求該二次函數(shù)的解析式;
(2)結(jié)合函數(shù)的圖象探索:當(dāng)y>0時(shí)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的中線,tanB= ,cosC= ,AC= .求:
(1)BC的長(zhǎng);
(2)sin∠ADC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,∠A=∠C=90°,BE、DF分別是∠ABC、∠ADC的平分線.求證:
(1)、∠1+∠2=90°;(2)、BE∥DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】勾股定理a2+b2=c2本身就是一個(gè)關(guān)于a,b,c的方程,滿足這個(gè)方程的正整數(shù)解(a,b,c)通常叫做勾股數(shù)組.畢達(dá)哥拉斯學(xué)派提出了一個(gè)構(gòu)造勾股數(shù)組的公式,根據(jù)該公式可以構(gòu)造出如下勾股數(shù)組:(3,4,5),(5,12,13),(7,24,25),….分析上面勾股數(shù)組可以發(fā)現(xiàn),4=1×(3+1),12=2×(5+1),24=3×(7+1),…分析上面規(guī)律,第5個(gè)勾股數(shù)組為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線經(jīng)過A(﹣1,0),B(5,0),C(0,- )三點(diǎn).
(1)求拋物線的解析式;
(2)在拋物線的對(duì)稱軸上有一點(diǎn)P,使PA+PC的值最小,求點(diǎn)P的坐標(biāo);
(3)點(diǎn)M為x軸上一動(dòng)點(diǎn),在拋物線上是否存在一點(diǎn)N,使以A,C,M,N四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,求點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=mx2+(1﹣2m)x+1﹣3m與x軸相交于不同的兩點(diǎn)A、B
(1)求m的取值范圍;
(2)證明該拋物線一定經(jīng)過非坐標(biāo)軸上的一點(diǎn)P,并求出點(diǎn)P的坐標(biāo);
(3)當(dāng) <m≤8時(shí),由(2)求出的點(diǎn)P和點(diǎn)A,B構(gòu)成的△ABP的面積是否有最值?若有,求出該最值及相對(duì)應(yīng)的m值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com