【題目】已知數(shù)軸上A,B兩點(diǎn)對(duì)應(yīng)的數(shù)分別為a和b,且a,b滿足等式,p為數(shù)軸上一動(dòng)點(diǎn),對(duì)應(yīng)的數(shù)為x.
______,______,線段______.
數(shù)軸上是否存在點(diǎn)p,使?若存在,求出x的值;若不存在,請(qǐng)說明理由.
在的條件下,若M,N分別是線段AB,PB的中點(diǎn),試求線段MN的長.
【答案】(1)-9;7;(2)15;(3)6或12.
【解析】
根據(jù)非負(fù)數(shù)的和等于零,可得每個(gè)非負(fù)數(shù)同時(shí)為零,根據(jù)數(shù)軸上兩點(diǎn)間的距離是大數(shù)減小數(shù),可得答案;
根據(jù)線段的和差,可得關(guān)于PB的方程,根據(jù)解方程,可得PB的長,根據(jù)數(shù)軸上的兩點(diǎn)間的距離,可得x;
根據(jù)線段中點(diǎn)的性質(zhì),可得MB,NB,根據(jù)線段的和差,可得答案.
解:由,得
,.
解得,.
線段;
當(dāng)P在AB上時(shí),,即,
即,
,
解得;
當(dāng)P在線段AB的延長線上時(shí),,
,
,
;
當(dāng)P在AB上時(shí),如圖1;
,
點(diǎn)M、點(diǎn)N分別是線段AB,PB的中點(diǎn),得
,.
由線段的和差,得
;
當(dāng)P在AB的延長線上時(shí),如圖2;
,
點(diǎn)M、點(diǎn)N分別是線段AB,PB的中點(diǎn),得
,.
由線段的和差,得
.
綜上所述:MN的長為6或12.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)對(duì)每個(gè)員工在當(dāng)月生產(chǎn)某種產(chǎn)品的件數(shù)統(tǒng)計(jì)如下:設(shè)產(chǎn)品件數(shù)為x(單位:件),企業(yè)規(guī)定:當(dāng)x<15時(shí)為不稱職;當(dāng)15≤x<20時(shí)為基本稱職;當(dāng)20≤x<25為稱職;當(dāng)x≥25時(shí)為優(yōu)秀.解答下列問題
(1)試求出優(yōu)秀員工人數(shù)所占百分比;
(2)計(jì)算所有優(yōu)秀和稱職的員工中月產(chǎn)品件數(shù)的中位數(shù)和眾數(shù);
(3)為了調(diào)動(dòng)員工的工作積極性,企業(yè)決定制定月產(chǎn)品件數(shù)獎(jiǎng)勵(lì)標(biāo)準(zhǔn),凡達(dá)到或超過這個(gè)標(biāo)準(zhǔn)的員工將受到獎(jiǎng)勵(lì).如果要使得所有優(yōu)秀和稱職的員工中至少有一半能獲獎(jiǎng),你認(rèn)為這個(gè)獎(jiǎng)勵(lì)標(biāo)準(zhǔn)應(yīng)定為多少件合適?簡述其理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點(diǎn)E.F分別在AB、CD上,AE=CF,連接AF,BF,DE,CE,分別交于H、G.
求證:(1)四邊形AECF是平行四邊形。(2)EF與GH互相平分。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列兩個(gè)等式: , ,給出定義如下:
我們稱使等式成立的一對(duì)有理數(shù), 為“共生有理數(shù)對(duì)”,記為(, ),如:數(shù)對(duì)(, ),(, ),都是“共生有理數(shù)對(duì)”.
(1)判斷數(shù)對(duì)(, ),(, )是不是“共生有理數(shù)對(duì)”,寫出過程;
(2)若(, )是“共生有理數(shù)對(duì)”,求的值;
(3)若(, )是“共生有理數(shù)對(duì)”,則(, ) “共生有理數(shù)對(duì)”(填“是”或“不是”);說明理由;
(4)請(qǐng)?jiān)賹懗鲆粚?duì)符合條件的 “共生有理數(shù)對(duì)”為 (注意:不能與題目中已有的“共生有理數(shù)對(duì)”重復(fù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,O是邊AC上一點(diǎn),以O(shè)為圓心,OA為半徑的圓分別交AB,AC于點(diǎn)E,D,在BC的延長線上取點(diǎn)F,使得BF=EF,EF與AC交于點(diǎn)G.
(1)試判斷直線EF與⊙O的位置關(guān)系,并說明理由;
(2)若OA=2,∠A=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠ABC=∠DCB,添加一個(gè)條件使△ABC≌△DCB,下列添加的條件不能使△ABC≌△DCB的是( 。
A. ∠A=∠D B. AB=DC C. AC=DB D. OB=OC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一塊等腰直角三角形零件(△ABC,其中∠ACB=90°),放置在一凹槽內(nèi),三個(gè)頂點(diǎn)A,B,C分別落在凹槽內(nèi)壁上,已知∠ADE=∠BED=90°,測得AD=5cm,BE=7cm,求該三角形零件的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,二次函數(shù)y=﹣ x2+bx+c的圖象與坐標(biāo)軸交于A,B,C三點(diǎn),其中點(diǎn)A的坐標(biāo)為(﹣3,0),點(diǎn)B的坐標(biāo)為(4,0),連接AC,BC.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),在線段AC上以每秒1個(gè)單位長度的速度向點(diǎn)C作勻速運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),在線段OB上以每秒1個(gè)單位長度的速度向點(diǎn)B作勻速運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.連接PQ.
(1)填空:b= , c=;
(2)在點(diǎn)P,Q運(yùn)動(dòng)過程中,△APQ可能是直角三角形嗎?請(qǐng)說明理由;
(3)在x軸下方,該二次函數(shù)的圖象上是否存在點(diǎn)M,使△PQM是以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若存在,請(qǐng)求出運(yùn)動(dòng)時(shí)間t;若不存在,請(qǐng)說明理由;
(4)如圖②,點(diǎn)N的坐標(biāo)為(﹣ ,0),線段PQ的中點(diǎn)為H,連接NH,當(dāng)點(diǎn)Q關(guān)于直線NH的對(duì)稱點(diǎn)Q′恰好落在線段BC上時(shí),請(qǐng)直接寫出點(diǎn)Q′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)函數(shù)的圖象如圖所示,給出以下結(jié)論:①當(dāng)x=0時(shí),函數(shù)值最大;②當(dāng)0<x<2時(shí),函數(shù)y隨x的增大而減小;③當(dāng)x<0時(shí),函數(shù)y隨x的增大而增大;④存在0<a<1,當(dāng)x=a時(shí),函數(shù)值為0.其中正確的結(jié)論是( )
A. ①② B. ②③ C. ③④ D. ①③
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com