【題目】如圖,矩形OABC的頂點A、C分別在x、y軸的正半軸上,點D為BC邊上的點,反比例函數(shù)y= (k≠0)在第一象限內(nèi)的圖象經(jīng)過點D(m,2)和AB邊上的點E(3, ).
(1)求反比例函數(shù)的表達式和m的值;
(2)將矩形OABC的進行折疊,使點O于點D重合,折痕分別與x軸、y軸正半軸交于點F,G,求折痕FG所在直線的函數(shù)關(guān)系式.

【答案】
(1)解:∵反比例函數(shù)y= (k≠0)在第一象限內(nèi)的圖象經(jīng)過點E(3, ),

∴k=3× =2,

∴反比例函數(shù)的表達式為y=

又∵點D(m,2)在反比例函數(shù)y= 的圖象上,

∴2m=2,解得:m=1


(2)解:設OG=x,則CG=OC﹣OG=2﹣x,

∵點D(1,2),

∴CD=1.

在Rt△CDG中,∠DCG=90°,CG=2﹣x,CD=1,DG=OG=x,

∴CD2+CG2=DG2,即1+(2﹣x)2=x2,

解得:x=

∴點G(0, ).

過點F作FH⊥CB于點H,如圖所示.

由折疊的特性可知:∠GDF=∠GOF=90°,OG=DG,OF=DF.

∵∠CGD+∠CDG=90°,∠CDG+∠HDF=90°,

∴∠CGD=∠HDF,

∵∠DCG=∠FHD=90°,

∴△GCD∽△DHF,

=2,

∴DF=2GD= ,

∴點F的坐標為( ,0).

設折痕FG所在直線的函數(shù)關(guān)系式為y=ax+b,

∴有 ,解得:

∴折痕FG所在直線的函數(shù)關(guān)系式為y=﹣ x+


【解析】(1)由點E的坐標利用反比例函數(shù)圖象上點的坐標特征即可求出k值,再由點B在反比例函數(shù)圖象上,代入即可求出m值;(2)設OG=x,利用勾股定理即可得出關(guān)于x的一元二次方程,解方程即可求出x值,從而得出點G的坐標.再過點F作FH⊥CB于點H,由此可得出△GCD∽△DHF,根據(jù)相似三角形的性質(zhì)即可求出線段DF的長度,從而得出點F的坐標,結(jié)合點G、F的坐標利用待定系數(shù)法即可求出結(jié)論.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】七(1)班小明同學通過《測量硬幣的厚度與質(zhì)量》實驗得到了每枚硬幣的厚度和質(zhì)量,數(shù)據(jù)如下表.他從儲蓄罐取出一把5角和1元硬幣,為了知道總的金額,他把這些硬幣疊起來,用尺量出它們的總厚度為22.6mm,又用天平稱出總質(zhì)量為78.5g,請你幫助小明同學算出這把硬幣的總金額為______元.

1元硬幣

5角硬幣

每枚厚度(單位:mm)

1.8

1.7

每枚質(zhì)量(單位:g)

6.1

6.0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,連接AE,CD,AECD交于點M,AEBC交于點N.

(1)求證:AE=CD;

(2)求證:AE⊥CD;

(3)連接BM,有以下兩個結(jié)論:①BM平分∠CBE;②MB平分∠AMD.其中正確的有   (請寫序號,少選、錯選均不得分).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P為定角∠AOB的平分線上的一個定點,且∠MPN∠AOB互補,若∠MPN在繞點P旋轉(zhuǎn)的過程中,其兩邊分別與OA、OB相交于M、N兩點,則以下結(jié)論:(1PM=PN恒成立;(2OM+ON的值不變;(3)四邊形PMON的面積不變;(4MN的長不變,其中正確的個數(shù)為(  )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有甲、乙兩個蓄水池,現(xiàn)將甲池中的水勻速注入乙池.甲、乙兩個蓄水池中水的深度(米)與注水時間(小時)之間的關(guān)系如圖5所示,根據(jù)圖像提供的信息,回答下列問題:

(1)注水前甲池中水的深度是_____________.(直接寫出答案).

(2)求甲池中水的深度(米)與注水時間(小時)之間的函數(shù)關(guān)系式;

(3)求注水多長時間時,甲、乙兩個蓄水池中水的深度相同.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一塊直角三角板DEF放置在ABC上,三角板DEF的兩條直角邊DE、DF恰好分別經(jīng)過點B、CABC中,∠A=50°,求∠DBA+DCA的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙、丙三個登山愛好者經(jīng)常相約去登山,今年1月甲參加了兩次登山活動.

(1)11日甲與乙同時開始攀登一座900米高的山,甲的平均攀登速度是乙的1.2,結(jié)果甲比乙早15分鐘到達頂峰.求甲的平均攀登速度是每分鐘多少米?

(2)16日甲與丙去攀登另一座h米高的山,甲保持第(1)問中的速度不變,比丙晚出發(fā)0.5小時,結(jié)果兩人同時到達頂峰,問甲的平均攀登速度是丙的多少倍?(用含h的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E是∠AOB的平分線上一點,ECOA,EDOB,垂足分別為C、D.

(1)求證:ED=EC;

(2)求證:∠ECD=EDC;

(3)求證:OE垂直平分CD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀下面例題的解法,然后解答問題:

例:若多項式2x3-x2+m分解因式的結(jié)果中有因式2x+1,求實數(shù)m的值.

解:設2x3-x2+m=(2x+1)·A(A為整式).

2x3-x2+m=(2x+1)·A=0,則2x+1=0A=0.

2x+1=0,解得x=-.

x=-是方程2x3-x2+m=0的解.

2×(-)3-(-)2+m=0,即--+m=0.

m=.

請你模仿上面的方法嘗試解決下面的問題:

若多項式x4+mx3+nx-16分解因式的結(jié)果中有因式(x-1)(x-2),求實數(shù)m,n的值.

查看答案和解析>>

同步練習冊答案