【題目】如圖,已知反比例函數(shù) (k≠0)的圖象過(guò)點(diǎn)A(﹣3,2).
(1)求這個(gè)反比例函數(shù)的解析式;
(2)若B(x1 , y1),C(x2 , y2),D(x3 , y3)是這個(gè)反比例函數(shù)圖象上的三個(gè)點(diǎn),若x1>x2>0>x3 , 請(qǐng)比較y1 , y2 , y3的大小,并說(shuō)明理由.
【答案】
(1)
解:將點(diǎn)A(﹣3,2)代入 y = k x (k≠0),求得k=﹣6,即 y = 6 x
(2)
解:∵k=﹣6<0,
∴圖象在二、四象限內(nèi),在每一象限內(nèi),y隨x的增大而增大,
∵x1>x2>0>x3,
∴點(diǎn)B、C在第四象限,點(diǎn)D在第二象限,
即y1<0,y2<0,y3>0,
∴y3>y1>y2.
【解析】(1)直接把點(diǎn)(﹣3,2)代入正比例函數(shù)y= (k≠0),即可得到結(jié)論;(2)根據(jù)(1)中的函數(shù)解析式判斷出函數(shù)的增減性,再根據(jù)x1>x2>0>x3 , 即可得出結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的位置如圖所示(每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形).
(1)將△ABC沿x軸方向向左平移6個(gè)單位,畫(huà)出平移后得到的△A1B1C1;
(2)將△ABC繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,畫(huà)出旋轉(zhuǎn)后得到的△AB2C2 , 并直接寫(xiě)出點(diǎn)B2、C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°AO是△ABC的角平分線.以O(shè)為圓心,OC為半徑作⊙O.
(1)求證:AB是⊙O的切線.
(2)已知AO角⊙O于點(diǎn)E,延長(zhǎng)AO交⊙O于點(diǎn)D,tanD= ,求 的值.
(3)在(2)的條件下,設(shè)⊙O的半徑為3,求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】大明因急事在運(yùn)行中的自動(dòng)扶梯上行走去二樓(如圖1),圖2中線段OA、OB分別表示大明在運(yùn)行中的自動(dòng)扶梯上行走去二樓和靜止站在運(yùn)行中的自動(dòng)扶梯上去二樓時(shí),距自動(dòng)扶梯起點(diǎn)的距離與時(shí)間之間的關(guān)系.下面四個(gè)圖中,虛線OC能大致表示大明在停止運(yùn)行(即靜止)的自動(dòng)扶梯上行走去二樓時(shí),距自動(dòng)扶梯起點(diǎn)的距離與時(shí)間關(guān)系的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】操作:小明準(zhǔn)備制作棱長(zhǎng)為1cm的正方體紙盒,現(xiàn)選用一些廢棄的紙片進(jìn)行如下設(shè)計(jì):
說(shuō)明:
方案一:圖形中的圓過(guò)點(diǎn)A、B、C;
方案二:直角三角形的兩直角邊與展開(kāi)圖左下角的正方形邊重合,斜邊經(jīng)過(guò)兩個(gè)正方形的頂點(diǎn)
紙片利用率= ×100%
發(fā)現(xiàn):
(1)方案一中的點(diǎn)A、B恰好為該圓一直徑的兩個(gè)端點(diǎn).你認(rèn)為小明的這個(gè)發(fā)現(xiàn)是否正確,請(qǐng)說(shuō)明理由.
(2)小明通過(guò)計(jì)算,發(fā)現(xiàn)方案一中紙片的利用率僅約為38.2%.請(qǐng)幫忙計(jì)算方案二的利用率,并寫(xiě)出求解過(guò)程.
探究:
(3)小明感覺(jué)上面兩個(gè)方案的利用率均偏低,又進(jìn)行了新的設(shè)計(jì)(方案三),請(qǐng)直接寫(xiě)出方案三的利用率.
說(shuō)明:方案三中的每條邊均過(guò)其中兩個(gè)正方形的頂點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB和拋物線交于點(diǎn)A(﹣4,0),B(0,4),且點(diǎn)B是拋物線的頂點(diǎn).
(1)求直線AB和拋物線的解析式.
(2)點(diǎn)P是直線上方拋物線上的一點(diǎn),求當(dāng)△PAB面積最大時(shí)點(diǎn)P的坐標(biāo).
(3)M是直線AB上一動(dòng)點(diǎn),在平面直角坐標(biāo)系內(nèi)是否存在點(diǎn)N,使以O(shè)、B、M、N為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:y=﹣x2+bx+c經(jīng)過(guò)A(﹣3,0)和B(0,3)兩點(diǎn),將這條拋物線的頂點(diǎn)記為M,它的對(duì)稱軸與x軸的交點(diǎn)記為N.
(1)求拋物線C的表達(dá)式;
(2)求點(diǎn)M的坐標(biāo);
(3)將拋物線C平移到拋物線C′,拋物線C′的頂點(diǎn)記為M′,它的對(duì)稱軸與x軸的交點(diǎn)記為N′.如果以點(diǎn)M、N、M′、N′為頂點(diǎn)的四邊形是面積為16的平行四邊形,那么應(yīng)將拋物線C怎樣平移?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC=2 ,D是AB的中點(diǎn),點(diǎn)E、F分別在AC、BC邊上運(yùn)動(dòng)(點(diǎn)E不與點(diǎn)A、C重合),且保持AE=CF,連接DE、DF、EF.在此運(yùn)動(dòng)變化的過(guò)程中,下列結(jié)論:①△DFE是等腰直角三角形;②四邊形CEDF的周長(zhǎng)不變;③點(diǎn)C到線段EF的最大距離為1.其中正確的結(jié)論有 . (填寫(xiě)所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,弦CD與直徑AB相交于點(diǎn)F.點(diǎn)E在⊙O外,做直線AE,且∠EAC=∠D
(1)求證:直線AE是⊙O的切線.
(2)若∠BAC=30°,BC=4,cos∠BAD= ,CF= ,求BF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com