如圖所示:直線MN⊥RS于點O,點B在射線OS上,OB=2,點C在射線ON上,OC=2,點E是射線OM上一動點,連結(jié)EB,過O作OP⊥EB于P,連結(jié)CP,過P作PF⊥PC交射線OS于F。
(1)求證:△POC∽△PBF。
(2)當(dāng)OE=1,OE=2時, BF的長分別為多少?當(dāng)OE=n時,BF=_______.
(3)當(dāng)OE=1時,;OE=2時, ;…,OE=n時,.則=_______.(直接寫出答案)
|
(1)證明:∵∠OPB=∠CPF
∴∠OPC=∠BPF ,
∵∠EOP=∠EOB=90,
∴∠EOP=∠OBP
∴∠POC=∠PBF
∴⊿POC∽⊿PBF
(2) 解∵ ⊿POC∽⊿PBF
∴OC/BF=PO/PB
∵⊿OPB∽⊿EOB
∴PO/PB=OE/OB
∴OC/BF= OE/OB
∴OE.BF=OC.OB=4
∴當(dāng)OE=1時,BF=4;
當(dāng)OE=2時,BF=2,當(dāng)OE=n時,BF=4/n.
(3)根據(jù)題意得;=2n;
【解析】(1)根據(jù)∠OPB=∠CPF,得出∠OPC=∠BPF,再根據(jù)∠EOP=∠EOB=90,得出∠EOP=∠OBP,∠POC=∠PBF,即可證出△POC∽△PBF;
(2)根據(jù)△POC∽△PBF,得出OC/BF =PO/PB ,再根據(jù)△OPB∽△EOB,得出OE•BF=OC•OB=4,即可求出BF的長;
(3)根據(jù)已知條件當(dāng)OE=1時,S△EBF=S1;OE=2時,S△EBF=S2;…,OE=n時,S△EBF=Sn即可求出S1+S2+…+Sn=2n
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
4 |
n |
4 |
n |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆浙江省江山市中考一模數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖所示:直線MN⊥RS于點O,點B在射線OS上,OB=2,點C在射線ON上,OC=2,點E是射線OM上一動點,連結(jié)EB,過O作OP⊥EB于P,連結(jié)CP,過P作PF⊥PC交射線OS于F。
(1)求證:△POC∽△PBF。
(2)當(dāng)OE=1,OE=2時, BF的長分別為多少?當(dāng)OE=n時,BF=_______.
(3)當(dāng)OE=1時,;OE=2時, ;…,OE=n時,.則=_______.(直接寫出答案)
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:不詳 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com