(2003•遼寧)若方程x2+x-1=0的兩根分別為x1、x2,則x12+x22=   
【答案】分析:因?yàn)閤1、x2是方程x2+x-1=0的兩個(gè)實(shí)數(shù)根,所以x1+x2=-1,x1•x2=-1,又因?yàn)閤12+x22=x12+2x1•x2+x22-2x1•x2=(x1+x22-2x1•x2.然后把前面的值代入即可求出其值.
解答:解:∵方程x2+x-1=0的兩根分別為x1、x2,
∴x1+x2=-1,x1•x2=-1,
又x12+x22=x12+2x1•x2+x22-2x1•x2=(x1+x22-2x1•x2=(-1)2-2×(-1)
=3.
故填空答案:3.
點(diǎn)評(píng):此題關(guān)鍵是把x12+x22轉(zhuǎn)化成可以利用x2+x-1=0的根與系數(shù)的關(guān)系的式子來(lái)解答.此題體現(xiàn)了轉(zhuǎn)化思想在解決數(shù)學(xué)問(wèn)題時(shí)的作用
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2003年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

(2003•遼寧)如圖,⊙D交y軸于A、B,交x軸于C,過(guò)點(diǎn)C的直線:y=-2x-8與y軸交于P.
(1)求證:PC是⊙D的切線;
(2)判斷在直線PC上是否存在點(diǎn)E,使得S△EOP=4S△CDO,若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)直線PC繞點(diǎn)P轉(zhuǎn)動(dòng)時(shí),與劣弧AC交于點(diǎn)F(不與A、C重合),連接OF,設(shè)PF=m,OF=n,求m、n之間滿足的函數(shù)關(guān)系式,并寫(xiě)出自變量n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年全國(guó)中考數(shù)學(xué)試題匯編《一元二次方程》(03)(解析版) 題型:填空題

(2003•遼寧)若方程x2+x-1=0的兩根分別為x1、x2,則x12+x22=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年浙江省嘉興市數(shù)學(xué)素質(zhì)評(píng)估卷10(秀洲區(qū)高照中學(xué))(解析版) 題型:解答題

(2003•遼寧)如圖,⊙D交y軸于A、B,交x軸于C,過(guò)點(diǎn)C的直線:y=-2x-8與y軸交于P.
(1)求證:PC是⊙D的切線;
(2)判斷在直線PC上是否存在點(diǎn)E,使得S△EOP=4S△CDO,若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)直線PC繞點(diǎn)P轉(zhuǎn)動(dòng)時(shí),與劣弧AC交于點(diǎn)F(不與A、C重合),連接OF,設(shè)PF=m,OF=n,求m、n之間滿足的函數(shù)關(guān)系式,并寫(xiě)出自變量n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年遼寧省中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2003•遼寧)用換元法解方程x2+3x-=8,若設(shè)x2+3x=y,則原方程可化成關(guān)于y的整式方程為   

查看答案和解析>>

同步練習(xí)冊(cè)答案