如圖:分別是的中點(diǎn),,分別是,的中點(diǎn)這樣延續(xù)下去.已知的周長是,的周長是,的周長是的周長是,則        .(相似三角形、規(guī)律探究)
利用三角形中位線定理得到各三角形周長與第一個(gè)三角形周長的關(guān)系.
解:∵A1B1C1分別是BC,AC,AB的中點(diǎn).
∴△A1B1C1的各邊分別為△ABC各邊的一半.△ABC的周長是1.
∴△A1B1C1的周長=,同理△A2B2C2的周長=()2,那么AnBnCn的周長是()n=
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在中,若,,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知==,且a-b+c=10,則a+b-c的值為(   )
A.6B.5C.4D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)如圖①,將邊長為4cm的正方形紙片ABCD沿EF折疊(點(diǎn)E、F分別在邊AB、CD上),使點(diǎn)B落在AD邊上的點(diǎn) M處,點(diǎn)C落在點(diǎn)N處,MN與CD交于點(diǎn)P, 連接EP.
⑴如圖②,若M為AD邊的中點(diǎn),①△AEM的周長=____    _cm;②求證:EP=AE+DP;

⑵隨著落點(diǎn)M在AD邊上取遍所有的位置(點(diǎn)M不與A、D重合),△PDM的周長是否發(fā)生變化?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)如圖,已知∠ACB=90°,ACBC,BECEEADCED,CEAB相交于F
(1)求證:△CEB≌△ADC;
(2)若AD=9cm,DE=6cm,求BEEF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)如圖,在Rt△ABC中,∠C=90°,AC=BC=4cm,點(diǎn)D為AC邊上一
點(diǎn),且AD=3cm,動(dòng)點(diǎn)E從點(diǎn)A出發(fā),以1cm/s的速度沿線段AB向終點(diǎn)B運(yùn)動(dòng),運(yùn)動(dòng)
時(shí)間為x s.作∠DEF=45°,與邊BC相交于點(diǎn)F.設(shè)BF長為ycm.
(1)當(dāng)x=   ▲ s時(shí),DE⊥AB;
(2)求在點(diǎn)E運(yùn)動(dòng)過程中,y與x之間的函數(shù)關(guān)系式及點(diǎn)F運(yùn)動(dòng)路線的長;
(3)當(dāng)△BEF為等腰三角形時(shí),求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2011四川瀘州,26,7分)如圖,點(diǎn)P為等邊△ABC外接圓劣弧BC上一點(diǎn).
(1)求∠BPC的度數(shù);
(2)求證:PA=PB+PC;
(3)設(shè)PA,BC交于點(diǎn)M,若AB=4,PC=2,求CM的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在正六邊形ABCDEF與正六邊形

∵正六邊形的每個(gè)內(nèi)角都等于120°
∴∠A=∠A′,         ,        ,
,         ,         ;
又∵AB=BC=CD=DE=EF=FA
=                        ;
=                            '
∴正六邊形ABCDEF∽正六邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分9分)填空或解答:點(diǎn)B、C、E在同一直線上,點(diǎn)A、D在直線CE
的同側(cè),AB=AC,EC=ED,∠BAC=∠CED,直線AE、BD交于點(diǎn)F。
(1)如圖①,若∠BAC=60°,則∠AFB=_________;如圖②,若∠BAC=90°,則∠AFB=_________;
(2)如圖③,若∠BAC=α,則∠AFB=_________(用含α的式子表示);
(3)將圖③中的△ABC繞點(diǎn)C旋轉(zhuǎn)(點(diǎn)F不與點(diǎn)A、B重合),得圖④或圖⑤。
在圖④中,∠AFB與∠α的數(shù)量關(guān)系是________________;
在圖⑤中,∠AFB與∠α的數(shù)量關(guān)系是________________。請(qǐng)你任選其中一個(gè)結(jié)論證明。

查看答案和解析>>

同步練習(xí)冊(cè)答案