(2012•拱墅區(qū)二模)如圖,已知AB⊥AE于A,EF⊥AE于E,要計(jì)算A,B兩地的距離,甲、乙、丙、丁四組同學(xué)分別測(cè)量了部分線段的長(zhǎng)度和角的度數(shù),得到以下四組數(shù)據(jù):
甲:AC、∠ACB;乙:EF、DE、AD;丙:AD、DE和∠DFE;
丁:CD、∠ACB、∠ADB.其中能求得A,B兩地距離的有( 。
分析:分別根據(jù)直角三角形的性質(zhì)及相似三角形的判定與性質(zhì)對(duì)四組數(shù)據(jù)進(jìn)行逐一分析即可.
解答:解:甲:∵已知AC、∠ACB,
∴AB=AC•tan∠ACB,故甲組符合題意;
乙組:∵AB⊥AE于A,EF⊥AE于E,
∴AE∥EF,
∴∠A=∠E=90°,
∵∠ADB=∠EDF,
∴△DEF∽△DAB,
DE
AD
=
EF
AB

∴AB=
AD•EF
DE
,故乙組符合題意;
丙:∵∠ADB=∠EDF,△ADB是直角三角形,
∴AB=AD°tan∠ADB,故丙組正確;
丁組:設(shè)AC=x,
∵AB=(x+CD)•tan∠ADB=x•tan∠ACB,
∴可求出AC的長(zhǎng),
∴AB=AC•tan∠ACB,故丁組正確.
故選D.
點(diǎn)評(píng):本題考查的是解直角三角形的應(yīng)用,解答道題的關(guān)鍵是將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,本題只要把實(shí)際問題抽象到相似三角形或直角三角形中,解直角三角形即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•拱墅區(qū)二模)如圖,在平面直角坐標(biāo)系中,?ABCO的頂點(diǎn)A在x軸上,頂點(diǎn)B的坐標(biāo)為(4,6).若直線y=kx+3k將?ABCO分割成面積相等的兩部分,則k的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•拱墅區(qū)二模)已知△ABC中,∠A=α.在圖(1)中∠B、∠C的角平分線交于點(diǎn)O1,則可計(jì)算得∠BO1C=90°+
1
2
α
;在圖(2)中,設(shè)∠B、∠C的兩條三等分角線分別對(duì)應(yīng)交于O1、O2,則∠BO2C=
60°+
2
3
α
60°+
2
3
α
;請(qǐng)你猜想,當(dāng)∠B、∠C同時(shí)n等分時(shí),(n-1)條等分角線分別對(duì)應(yīng)交于O1、O2,…,On-1,如圖(3),則∠BOn-1C=
(n-1)α
n
+
180°
n
(n-1)α
n
+
180°
n
(用含n和α的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•拱墅區(qū)二模)設(shè)a=x1+x2,b=x1•x2,那么|x1-x2|可以表示為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•拱墅區(qū)二模)下列計(jì)算正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•拱墅區(qū)二模)當(dāng)分式方程
x-1
x+1
=1+
a
x+1
中的a取下列某個(gè)值時(shí),該方程有解,則這個(gè)a是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案