【題目】如圖,在正方形ABCD中,以BC為直徑的正方形內(nèi),作半圓O,AE切半圓于點F交CD于E
(1) 求證:AO⊥EO
(2) 連接DF,求tan∠FDE的值
【答案】(1)證明見解析;
(2)tan∠FDE的值是
【解析】試題分析:(1)、根據(jù)切線的性質(zhì)得出∠BAO=∠FAO,∠CEO=∠FEO,根據(jù)四邊形的性質(zhì)得出∠BAE+∠CEA=180°,從而說明∠DAF+∠OEF=90°,得出垂直;(2)、設(shè)OB=OC=2,則AB=4,根據(jù)△AOB和△OEC全等得出CE=EF=1,DE=3,AE=5,過點F作FG⊥DE于G,則FG∥AD,根據(jù)平行線截線段成比例得出FG、EG和DG的長度,最后根據(jù)三角函數(shù)的計算法則得出答案.
試題解析:(1) ∵∠ABC=∠DCB=90° ∴AD、CD均為半圓的切線
連接OF ∵AE切半圓于E ∴∠BAO=∠FAO,∠CEO=∠FEO ∵∠BAE+∠CEA=180°
∴∠DAF+∠OEF=90° ∴∠AOE=90° ∴AO⊥EO
(2) 設(shè)OB=OC=2,則AB=4 ∵Rt△AOB∽Rt△OEC ∴CE=EF=1,DE=3,AE=5
過點F作FG⊥DE于G ∴FG∥AD
∴ 即 ∴FG=,EG=,DG= ∴tan∠FDE=
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將拋物線y=3x2向左平移2個單位,再向下平移1個單位,所得拋物線為( )
A.y=3(x﹣2)2﹣1
B.y=3(x﹣2)2+1
C.y=3(x+2)2﹣1
D.y=3(x+2)2+1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為12的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,當(dāng)兩個三角形重疊部分的面積為32時,它移動的距離AA′等于( 。
A.4
B.6或4
C.8
D.4或8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)動屬于平移的是( )
A. 空中放飛的風(fēng)箏
B. 飛機(jī)的機(jī)身在跑道上滑行至停止
C. 運(yùn)動員投出的籃球
D. 乒乓球比賽中高拋發(fā)球后,乒乓球的運(yùn)動方式
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC各頂點的坐標(biāo)分別為A(﹣2,5)B(﹣5,﹣2),C(3,3).將△ABC先向右平移4個單位長度,再向下平移3個單位長度,得到△A′B′C′.
(1)在圖中畫出第二次平移之后的圖形△A′B′C′;
(2)如果將△A′B′C′看成是由△ABC經(jīng)過一次平移得到的,請指出這一平移的平移方向和平移距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣x+2分別與x、y軸交于點B、A,與反比例函數(shù)的圖象分別交于點C、D,CE⊥x軸于點E,OE=2.
(1)求反比例函數(shù)的解析式;
(2)連接OD,求△OBD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖所示,∠ABD和∠BDC的平分線交于E,BE交CD于點F,∠1+∠2=90°.
(1)求證:AB∥CD;
(2)試探究∠2與∠3的數(shù)量關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com