【題目】如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,CE平分∠ACB交⊙O于E,交AB于點(diǎn)D,連接AE,∠E=30°,AC=5.
(1)求CE的長(zhǎng);
(2)求S△ADC:S△ACE的比值.
【答案】(1);(2)﹣3.
【解析】
(1)先根據(jù)圓周角定理得出∠ACB=90°,由∠ABC=30°可得出AB的長(zhǎng),再由CE平分∠ACB得出∠BCE=∠BAE=45°,故可得出△ABE是等腰直角三角形,由勾股定理可得出AE的長(zhǎng);過(guò)點(diǎn)A作AF⊥CE于點(diǎn)F,△ACF為等腰直角三角形,由勾股定理得,AF和CF的長(zhǎng),再由勾股定理逆定理得EF的長(zhǎng),最后計(jì)算CE=CF+EF的長(zhǎng)即可;(2)過(guò)點(diǎn)C作CM⊥AB于點(diǎn)M,連接OE,利用等底三角形的面積比等于高之比,得出:=,再通過(guò)比值計(jì)算即可得:的比值.
解:
(1)∵AB是⊙O的直徑,
∴∠ACB=∠AEB=90°,
又∠E=30°,
∴∠ABC=30°,
∵AC=5,
∴AB=10,BC=,
∵CE平分∠ACB,
∴∠ACE=∠BCE=45°,AE=BE=.
如圖,過(guò)點(diǎn)A作AF⊥CE于點(diǎn)F,
則△ACF為等腰直角三角形,
∴,
∴2CF2=25,
∴AF=CF=,
∴EF= ,
∴CE=CF+EF=,
∴CE的長(zhǎng)為.
(2)過(guò)C作CM⊥AB于點(diǎn)M,連接OE,
∵AE=BE,O為AB中點(diǎn),
∴OE⊥AB,
∴S△ADC:S△ADE=CM:OE=CM:5,
∵ACBC=ABCM,
∴CM=,
∴S△ADC:S△ADE=,
∴S△ADC:S△ACE=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,E是CD的延長(zhǎng)線上一點(diǎn),BE與AD交于點(diǎn)F,CD=2DE.若△DEF的面積為a,則平行四邊形ABCD的面積為 ▲ (用a的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形的一條對(duì)角線把這個(gè)四邊形分成了兩個(gè)三角形,如果這兩個(gè)三角形相似但不全等,我們就把這條對(duì)角線叫做這個(gè)四邊形的“相似對(duì)角線”.
(1)如圖1,在四邊形中,,,,對(duì)角線平分.求證:是四邊形的“相似對(duì)角線”;
(2)如圖2,已知格點(diǎn),請(qǐng)你在正方形網(wǎng)格中畫出所有的格點(diǎn)四邊形,使四邊形是以為“相似對(duì)角線”的四邊形;(注:頂點(diǎn)在小正方形頂點(diǎn)處的多邊形稱為格點(diǎn)多邊形)
(3)如圖3,四邊形中,點(diǎn)在射線:上,點(diǎn)在軸正半軸上,對(duì)角線平分,連接.若是四邊形的“相似對(duì)角線”,,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】建造一個(gè)面積為130m2的長(zhǎng)方形養(yǎng)雞場(chǎng),雞場(chǎng)的一邊靠墻,墻長(zhǎng)為a米,另三邊用竹籬笆圍成,如果籬笆總長(zhǎng)為33米.
(1)求養(yǎng)雞場(chǎng)的長(zhǎng)與寬各為多少米?
(2)若10≤a<18,題中的解的情況如何?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知頂點(diǎn)為的拋物線經(jīng)過(guò)點(diǎn).
(1)求拋物線的解析式;
(2)設(shè),分別是軸、軸上的兩個(gè)動(dòng)點(diǎn).
①當(dāng)四邊形的周長(zhǎng)最小時(shí),在圖1中作直線,保留作圖痕跡.并直接寫出直線的解析式;
②點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn),是的中點(diǎn),以為斜邊按圖2所示構(gòu)造等腰.在①的條件下,記與的公共部分的面積為.求關(guān)于的函數(shù)關(guān)系式,并求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系中,點(diǎn)C(0,2),D(3,4),在x軸正半軸上有一點(diǎn)A,且它到原點(diǎn)的距離為1.
(1)求過(guò)點(diǎn)C、A、D的拋物線的解析式;
(2)設(shè)(1)中拋物線與x軸的另一個(gè)交點(diǎn)為B,求四邊形CABD的面積;
(3)把(1)中的拋物線先向左平移一個(gè)單位,再向上或向下平移多少個(gè)單位能使拋物線與直線AD只有一個(gè)交點(diǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線.
(1)求拋物線的對(duì)稱軸;
(2)當(dāng)時(shí),設(shè)拋物線與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),頂點(diǎn)為,若為等邊三角形,求的值;
(3)過(guò)(其中)且垂直軸的直線與拋物線交于兩點(diǎn).若對(duì)于滿足條件的任意值,線段的長(zhǎng)都不小于1,結(jié)合函數(shù)圖象,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E是AD邊上一點(diǎn),AE:ED=1:2,連接AC、BE交于點(diǎn)F.若S△AEF=1,則S四邊形CDEF=_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com