【題目】如圖,在△ABC中,AB=AC,以AB為直徑作半圓O,交BC于點D,交AC于點E.
(1)求證:BD=CD.
(2)若弧DE=50°,求∠C的度數(shù).
(3)過點D作DF⊥AB于點F,若BC=8,AF=3BF,求弧BD的長.
【答案】(1)詳見解析;(2)65°;(3).
【解析】
(1)連接AD,利用圓周角定理推知AD⊥BD,然后由等腰三角形的性質(zhì)證得結(jié)論;
(2)根據(jù)已知條件得到∠EOD=50°,結(jié)合圓周角定理求得∠DAC=25°,所以根據(jù)三角形內(nèi)角和定理求得∠ABD的度數(shù),則∠C=∠ABD,得解;
(3)設(shè)半徑OD=x.則AB=2x.由AF=3BF可得AF=AB=x,BF=AB=x,根據(jù)射影定理知:BD2=BFAB,據(jù)此列出方程求得x的值,最后代入弧長公式求解.
(1)證明:如圖,連接AD.
∵AB是圓O的直徑,
∴AD⊥BD.
又∵AB=AC,
∴BD=CD.
(2)解:∵弧DE=50°,
∴∠EOD=50°.
∴∠DAE=∠DOE=25°.
∵由(1)知,AD⊥BD,則∠ADB=90°,
∴∠ABD=90°﹣25°=65°.
∵AB=AC,
∴∠C=∠ABD=65°.
(3)∵BC=8,BD=CD,
∴BD=4.
設(shè)半徑OD=x.則AB=2x.
由AF=3BF可得AF=AB=x,BF=AB=x,
∵AD⊥BD,DF⊥AB,
∴BD2=BFAB,即42=x2x.
解得x=4.
∴OB=OD=BD=4,
∴△OBD是等邊三角形,
∴∠BOD=60°.
∴弧BD的長是:=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,每次旋轉(zhuǎn)都以圖中的A、B、C、D、E、F中不同的點為旋轉(zhuǎn)中心,旋轉(zhuǎn)角度為k90°(k為整數(shù)),現(xiàn)在要將左邊的陰影四邊形正好通過n次旋轉(zhuǎn)得到右邊的陰影四邊形,則n的值可以是( 。
A.n=1可以,n=2,3不可B.n=2可以,n=1,3不可
C.n=1,2可以,n=3不可D.n=1,2,3均可
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班“數(shù)學(xué)興趣小組”對函數(shù)y=x2﹣2|x|的圖象和性質(zhì)進(jìn)行了探究,探究過程如下,請補充完整:
(1)自變量x的取值范圍是全體實數(shù),x與y的幾組對應(yīng)值列表如下:
x | … | ﹣3 |
| ﹣2 | ﹣1 | 0 | 1 | 2 |
| 3 | … |
y | … | 3 |
| m | ﹣1 | 0 | ﹣1 | 0 |
| 3 | … |
其中,m= .
(2)根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點,并畫出了函數(shù)圖象的一部分,請畫出該函數(shù)圖象的另一部分.
(3)探究函數(shù)圖象發(fā)現(xiàn):
①函數(shù)圖象與x軸有 個交點,所以對應(yīng)的方程x2﹣2|x|=0有 個實數(shù)根;
②方程x2﹣2|x|=有 個實數(shù)根;
③關(guān)于x的方程x2﹣2|x|=a有4個實數(shù)根時,a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+3x+4與x軸交于A、B兩點,與y軸交于C點,點D在拋物線上且橫坐標(biāo)為3.
(1)求tan∠DBC的值;
(2)點P為拋物線上一點,且∠DBP=45°,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明開著汽車在平坦的公路上行駛,前放出現(xiàn)兩座建筑物A、B(如圖),在(1)處小穎能看到B建筑物的一部分,(如圖),此時,小明的視角為30°,已知A建筑物高25米.
(1)請問汽車行駛到什么位置時,小明剛好看不到建筑物B?請在圖中標(biāo)出這點.
(2)若小明剛好看不到B建筑物時,他的視線與公路的夾角為45°,請問他向前行駛了多少米?( 精確到0.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖,則下列敘述正確的是( )
A. abc<0 B. -3a+c<0
C. b2-4ac≥0 D. 將該函數(shù)圖象向左平移2個單位后所得到拋物線的解析式為y=ax2+c
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx(a<0)過點E(10,0),矩形ABCD的邊AB在線段OE上(點A在點B的左邊),點C,D在拋物線上.設(shè)A(t,0),當(dāng)t=2時,AD=4.
(1)求拋物線的函數(shù)表達(dá)式.
(2)當(dāng)t為何值時,矩形ABCD的周長有最大值?最大值是多少?
(3)保持t=2時的矩形ABCD不動,向右平移拋物線.當(dāng)平移后的拋物線與矩形的邊有兩個交點G,H,且直線GH平分矩形的面積時,求拋物線平移的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】求二次函數(shù)的圖象如圖所示,其對稱軸為直線,與軸的交點為、,其中,有下列結(jié)論:①;②;③;④;⑤;其中,正確的結(jié)論有( )
A.5B.4C.3D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面坐標(biāo)系xOy中,點A的坐標(biāo)為(1,0),點P的橫坐標(biāo)為2,將點A繞點P旋轉(zhuǎn),使它的對應(yīng)點B恰好落在x軸上(不與A點重合);再將點B繞點O逆時針旋轉(zhuǎn)90°得到點C.
(1)直接寫出點B和點C的坐標(biāo);
(2)求經(jīng)過A,B,C三點的拋物線的表達(dá)式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com