【題目】如圖,在平行四邊形ABCD中,EBC邊上一點(diǎn),連接DE,點(diǎn)F為線段DE上一點(diǎn),且AFEB.

1)求證ADF∽△DEC;

2)若BE2,AD6,且DF=DE,求DF的長(zhǎng)度.

【答案】1)見解析;(2DF=4

【解析】

1)根據(jù)平行四邊形的性質(zhì)得到∠ADF=∠DEC,∠C+B=180°,根據(jù)∠AFE=∠B得到∠AFD=C,根據(jù)相似三角形的判定定理即可證明;

2)根據(jù)相似三角形的性質(zhì)列出比例式,代入計(jì)算即可.

解:(1)證明:∵四邊形ABCD是平行四邊形,

∴∠C+B180°,∠ADF=∠DEC,

∵∠AFD+AFE180°,∠AFE=∠B,

∴∠AFD=∠C,

∴△ADF∽△DEC;

2)∵ADF∽△DEC

∵四邊形ABCD是平行四邊形,AD=6,BE=2

EC=BC-BE=AD-BE=4

又∵DF=DE

DE=DF

解得DF=4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中, ,以邊的中點(diǎn)為圓心,作半圓與相切,點(diǎn)分別是邊和半圓上的動(dòng)點(diǎn),連接,長(zhǎng)的最大值與最小值的和是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次羽毛球賽中,甲運(yùn)動(dòng)員在離地面米的P點(diǎn)處發(fā)球,球的運(yùn)動(dòng)軌跡PAN看作一個(gè)拋物線的一部分,當(dāng)球運(yùn)動(dòng)到最高點(diǎn)A時(shí),其高度為3米,離甲運(yùn)動(dòng)員站立地點(diǎn)O的水平距離為5米,球網(wǎng)BC離點(diǎn)O的水平距離為6米,以點(diǎn)O為原點(diǎn)建立如圖所示的坐標(biāo)系,乙運(yùn)動(dòng)員站立地點(diǎn)M的坐標(biāo)為(m0.

1)求拋物線的解析式(不要求寫自變量的取值范圍);

2)求羽毛球落地點(diǎn)N離球網(wǎng)的水平距離(即NC的長(zhǎng));

3)乙原地起跳后可接球的最大高度為2.4米,若乙因?yàn)榻忧蚋叨炔粔蚨,?/span>m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,在ABC中,ABAC,點(diǎn)DE分別在邊AB,AC上,且DEBC,若AD2,AE,則的值是   ;

2)如圖2,在(1)的條件下,將ADE繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)一定的角度,連接CEBD,的值變化嗎?若變化,請(qǐng)說明理由;若不變化,請(qǐng)求出不變的值;

3)如圖3,在四邊形ABCD中,ACBC于點(diǎn)C,∠BAC=∠ADCθ,且tanθ,當(dāng)CD6,AD3時(shí),請(qǐng)直接寫出線段BD的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸交于A(3,0)和B(1,0)兩點(diǎn),交y軸于點(diǎn)C(0,3),點(diǎn)C、D是二次函數(shù)圖象上的一對(duì)對(duì)稱點(diǎn),一次函數(shù)的圖象過點(diǎn)B、D.

(1)請(qǐng)直接寫出D點(diǎn)的坐標(biāo).

(2)求二次函數(shù)的解析式.

(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,矩形OABC的頂點(diǎn)A的坐標(biāo)為(4,0),O為坐標(biāo)原點(diǎn),點(diǎn)B在第一象限,連接AC, tan∠ACO=2,DBC的中點(diǎn),

1)求點(diǎn)D的坐標(biāo);

2)如圖2,M是線段OC上的點(diǎn),OM=OC,點(diǎn)P是線段OM上的一個(gè)動(dòng)點(diǎn),經(jīng)過P、DB三點(diǎn)的拋物線交 軸的正半軸于點(diǎn)E,連接DEAB于點(diǎn)F.

△DBF沿DE所在的直線翻折,若點(diǎn)B恰好落在AC上,求此時(shí)點(diǎn)P的坐標(biāo);

以線段DF為邊,在DF所在直線的右上方作等邊△DFG,當(dāng)動(dòng)點(diǎn)P從點(diǎn)O運(yùn)動(dòng)到點(diǎn)M時(shí),點(diǎn)G也隨之運(yùn)動(dòng),請(qǐng)直接寫出點(diǎn)G運(yùn)動(dòng)的路徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線ly=﹣x2+bx+cb,c為常數(shù)),其頂點(diǎn)E在正方形ABCD內(nèi)或邊上,已知點(diǎn)A(1,2),B(1,1),C(2,1).

(1)直接寫出點(diǎn)D的坐標(biāo)_____________;

(2)l經(jīng)過點(diǎn)B,C,l的解析式

(3)設(shè)lx軸交于點(diǎn)M,N,當(dāng)l的頂點(diǎn)E與點(diǎn)D重合時(shí),求線段MN的值;當(dāng)頂點(diǎn)E在正方形ABCD內(nèi)或邊上時(shí)直接寫出線段MN的取值范圍;

(4)l經(jīng)過正方形ABCD的兩個(gè)頂點(diǎn)直接寫出所有符合條件的c的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+cx軸分別于點(diǎn)A(﹣30),B1,0),交y軸正半軸于點(diǎn)D,拋物線頂點(diǎn)為C.下列結(jié)論:①2ab0;②a+b+c0;③abam2+bm;④當(dāng)△ABC是等腰直角三角形時(shí),a=﹣0.5;⑤若D0,3),則拋物線的對(duì)稱軸直線x=﹣1上的動(dòng)點(diǎn)PB、D兩點(diǎn)圍成的△PBD周長(zhǎng)最小值為.其中,正確的個(gè)數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于二次函數(shù),下列說法不正確的是(

A.其圖象的對(duì)稱軸為過且平行于軸的直線.

B.其最小值為1.

C.其圖象與軸沒有交點(diǎn).

D.當(dāng)時(shí),的增大而增大.

查看答案和解析>>

同步練習(xí)冊(cè)答案