【題目】如圖,在平行四邊形ABCD中,E為BC邊上一點(diǎn),連接DE,點(diǎn)F為線段DE上一點(diǎn),且∠AFE=∠B.
(1)求證△ADF∽△DEC;
(2)若BE=2,AD=6,且DF=DE,求DF的長(zhǎng)度.
【答案】(1)見解析;(2)DF=4
【解析】
(1)根據(jù)平行四邊形的性質(zhì)得到∠ADF=∠DEC,∠C+∠B=180°,根據(jù)∠AFE=∠B得到∠AFD=∠C,根據(jù)相似三角形的判定定理即可證明;
(2)根據(jù)相似三角形的性質(zhì)列出比例式,代入計(jì)算即可.
解:(1)證明:∵四邊形ABCD是平行四邊形,
∴∠C+∠B=180°,∠ADF=∠DEC,
∵∠AFD+∠AFE=180°,∠AFE=∠B,
∴∠AFD=∠C,
∴△ADF∽△DEC;
(2)∵△ADF∽△DEC
∴
∵四邊形ABCD是平行四邊形,AD=6,BE=2
∴EC=BC-BE=AD-BE=4,
又∵DF=DE
∴DE=DF
∴
解得DF=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中, ,以邊的中點(diǎn)為圓心,作半圓與相切,點(diǎn)分別是邊和半圓上的動(dòng)點(diǎn),連接,則長(zhǎng)的最大值與最小值的和是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次羽毛球賽中,甲運(yùn)動(dòng)員在離地面米的P點(diǎn)處發(fā)球,球的運(yùn)動(dòng)軌跡PAN看作一個(gè)拋物線的一部分,當(dāng)球運(yùn)動(dòng)到最高點(diǎn)A時(shí),其高度為3米,離甲運(yùn)動(dòng)員站立地點(diǎn)O的水平距離為5米,球網(wǎng)BC離點(diǎn)O的水平距離為6米,以點(diǎn)O為原點(diǎn)建立如圖所示的坐標(biāo)系,乙運(yùn)動(dòng)員站立地點(diǎn)M的坐標(biāo)為(m,0).
(1)求拋物線的解析式(不要求寫自變量的取值范圍);
(2)求羽毛球落地點(diǎn)N離球網(wǎng)的水平距離(即NC的長(zhǎng));
(3)乙原地起跳后可接球的最大高度為2.4米,若乙因?yàn)榻忧蚋叨炔粔蚨,?/span>m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在△ABC中,AB>AC,點(diǎn)D,E分別在邊AB,AC上,且DE∥BC,若AD=2,AE=,則的值是 ;
(2)如圖2,在(1)的條件下,將△ADE繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)一定的角度,連接CE和BD,的值變化嗎?若變化,請(qǐng)說明理由;若不變化,請(qǐng)求出不變的值;
(3)如圖3,在四邊形ABCD中,AC⊥BC于點(diǎn)C,∠BAC=∠ADC=θ,且tanθ=,當(dāng)CD=6,AD=3時(shí),請(qǐng)直接寫出線段BD的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交于A(﹣3,0)和B(1,0)兩點(diǎn),交y軸于點(diǎn)C(0,3),點(diǎn)C、D是二次函數(shù)圖象上的一對(duì)對(duì)稱點(diǎn),一次函數(shù)的圖象過點(diǎn)B、D.
(1)請(qǐng)直接寫出D點(diǎn)的坐標(biāo).
(2)求二次函數(shù)的解析式.
(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形OABC的頂點(diǎn)A的坐標(biāo)為(4,0),O為坐標(biāo)原點(diǎn),點(diǎn)B在第一象限,連接AC, tan∠ACO=2,D是BC的中點(diǎn),
(1)求點(diǎn)D的坐標(biāo);
(2)如圖2,M是線段OC上的點(diǎn),OM=OC,點(diǎn)P是線段OM上的一個(gè)動(dòng)點(diǎn),經(jīng)過P、D、B三點(diǎn)的拋物線交 軸的正半軸于點(diǎn)E,連接DE交AB于點(diǎn)F.
①將△DBF沿DE所在的直線翻折,若點(diǎn)B恰好落在AC上,求此時(shí)點(diǎn)P的坐標(biāo);
②以線段DF為邊,在DF所在直線的右上方作等邊△DFG,當(dāng)動(dòng)點(diǎn)P從點(diǎn)O運(yùn)動(dòng)到點(diǎn)M時(shí),點(diǎn)G也隨之運(yùn)動(dòng),請(qǐng)直接寫出點(diǎn)G運(yùn)動(dòng)的路徑的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線l:y=﹣x2+bx+c(b,c為常數(shù)),其頂點(diǎn)E在正方形ABCD內(nèi)或邊上,已知點(diǎn)A(1,2),B(1,1),C(2,1).
(1)直接寫出點(diǎn)D的坐標(biāo)_____________;
(2)若l經(jīng)過點(diǎn)B,C,求l的解析式;
(3)設(shè)l與x軸交于點(diǎn)M,N,當(dāng)l的頂點(diǎn)E與點(diǎn)D重合時(shí),求線段MN的值;當(dāng)頂點(diǎn)E在正方形ABCD內(nèi)或邊上時(shí),直接寫出線段MN的取值范圍;
(4)若l經(jīng)過正方形ABCD的兩個(gè)頂點(diǎn),直接寫出所有符合條件的c的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c交x軸分別于點(diǎn)A(﹣3,0),B(1,0),交y軸正半軸于點(diǎn)D,拋物線頂點(diǎn)為C.下列結(jié)論:①2a﹣b=0;②a+b+c=0;③a﹣b>am2+bm;④當(dāng)△ABC是等腰直角三角形時(shí),a=﹣0.5;⑤若D(0,3),則拋物線的對(duì)稱軸直線x=﹣1上的動(dòng)點(diǎn)P與B、D兩點(diǎn)圍成的△PBD周長(zhǎng)最小值為.其中,正確的個(gè)數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于二次函數(shù),下列說法不正確的是( )
A.其圖象的對(duì)稱軸為過且平行于軸的直線.
B.其最小值為1.
C.其圖象與軸沒有交點(diǎn).
D.當(dāng)時(shí),隨的增大而增大.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com