【題目】如圖,在正方形ABCD中,E為邊AD上的點(diǎn),點(diǎn)F在邊CD上,且CF3FD,∠BEF90°

1)求證:△ABE∽△DEF;

2)若AB4,延長(zhǎng)EFBC的延長(zhǎng)線于點(diǎn)G,求BG的長(zhǎng)

【答案】1)詳見(jiàn)解析;(210

【解析】

1)由正方形的性質(zhì)得出∠A=∠D90°,ABBCCDAD,ADBC,證出∠ABE=∠DEF,即可得出△ABE∽△DEF;

2)求出DF1CF3,由相似三角形的性質(zhì)得出,解得DE2,證明△EDF∽△GCF,得出 ,求出CG6,即可得出答案.

1)證明:∵四邊形ABCD為正方形,

∴∠A=∠D90°,ABBCCDAD,ADBC

∵∠BEF90°,

∵∠AEB+EBA=∠DEF+EBA90°,

∴∠ABE=∠DEF,

∴△ABE∽△DEF

2)解:∵ABBCCDAD4,CF3FD

DF1,CF3,

∵△ABE∽△DEF

,即

解得:DE2,

ADBC

∴△EDF∽△GCF,

,即,

CG6,

BGBC+CG4+610

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一條長(zhǎng)為的鐵絲剪成兩段,并以每一段鐵絲的長(zhǎng)度為周長(zhǎng)做成一個(gè)正方形。

1)要使這兩個(gè)正方形的面積之和等于,那么這段鐵絲剪成兩段后的長(zhǎng)度分別是多少?

2)兩個(gè)正方形的面積之和可能等于嗎?若能,求出兩段鐵絲的長(zhǎng)度;若不能,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一張等腰三角形紙片,AB=AC=5,BC=3,小明將它沿虛線PQ剪開(kāi),得到△AQP和四邊形BCPQ兩張紙片(如圖所示),且滿足∠BQP=∠B,則下列五個(gè)數(shù)據(jù),3,,2,中可以作為線段AQ長(zhǎng)的有_____個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)青少年發(fā)展基金會(huì)為某地“希望小學(xué)”捐贈(zèng)物資,其中文具和食品共320件,文具比食品多80件.

1)求文具和食品各多少件;

2)現(xiàn)計(jì)劃租用甲、乙兩種貨車共8輛,一次性將這批文具和食品全部運(yùn)往該地.已知甲種貨車最多可裝文具40件和食品10件,乙種貨車最多可裝文具和食品各20件.則中國(guó)青少年發(fā)展基金會(huì)安排甲、乙兩種貨車時(shí)有幾種方案?請(qǐng)你幫助設(shè)計(jì)出來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖1,在ABC中,點(diǎn)DAB上,連接CD. DE平分∠BDCBC于點(diǎn)E,且DEAC, FAC的中點(diǎn),連接DF

1)求證:DFDE

2)若BECE=23SCDE9,求ABC的面積.

3)如圖2MBC的中點(diǎn),過(guò)MMNDEAB于點(diǎn)N,交CD于點(diǎn)G,若BD=a,DG=b.試求CD的長(zhǎng)(用a、b的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校數(shù)學(xué)興趣小組的同學(xué)測(cè)量一架無(wú)人飛機(jī)P的高度,如圖,AB兩個(gè)觀測(cè)點(diǎn)相距,在A處測(cè)得P在北偏東71°方向上,同時(shí)在B處測(cè)得P在北偏東35°方向上.求無(wú)人飛機(jī)P離地面的高度.(結(jié)果精確到1米,參考數(shù)據(jù):,,sin71°0.95tan71°2.90)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為做好防汛工作,防汛指揮部決定對(duì)某水庫(kù)的水壩進(jìn)行加高加固,專家提供的方案是:水壩加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如圖所示,已知AE=4米,∠EAC=130°,求水壩原來(lái)的高度BC.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某經(jīng)銷商銷售一種產(chǎn)品,這種產(chǎn)品的成本價(jià)為10/千克,已知銷售價(jià)不低于成本價(jià),且物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不高于18/千克,市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價(jià)x(元/千克)之間的函數(shù)關(guān)系如圖所示:

1)求yx之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;

2)求每天的銷售利潤(rùn)W(元)與銷售價(jià)x(元/千克)之間的函數(shù)關(guān)系式.當(dāng)銷售價(jià)為多少時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?

3)該經(jīng)銷商想要每天獲得150元的銷售利潤(rùn),銷售價(jià)應(yīng)定為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的方程ax2+a+2x+9a0有兩個(gè)不等的實(shí)數(shù)根x1,x2,且x11x2,那么a的取值范圍是( 。

A.aB.aC.a<﹣D.a0

查看答案和解析>>

同步練習(xí)冊(cè)答案