【題目】如圖,在正方形ABCD中,E為邊AD上的點(diǎn),點(diǎn)F在邊CD上,且CF=3FD,∠BEF=90°
(1)求證:△ABE∽△DEF;
(2)若AB=4,延長(zhǎng)EF交BC的延長(zhǎng)線于點(diǎn)G,求BG的長(zhǎng)
【答案】(1)詳見(jiàn)解析;(2)10
【解析】
(1)由正方形的性質(zhì)得出∠A=∠D=90°,AB=BC=CD=AD,AD∥BC,證出∠ABE=∠DEF,即可得出△ABE∽△DEF;
(2)求出DF=1,CF=3,由相似三角形的性質(zhì)得出,解得DE=2,證明△EDF∽△GCF,得出 ,求出CG=6,即可得出答案.
(1)證明:∵四邊形ABCD為正方形,
∴∠A=∠D=90°,AB=BC=CD=AD,AD∥BC,
∵∠BEF=90°,
∵∠AEB+∠EBA=∠DEF+∠EBA=90°,
∴∠ABE=∠DEF,
∴△ABE∽△DEF;
(2)解:∵AB=BC=CD=AD=4,CF=3FD,
∴DF=1,CF=3,
∵△ABE∽△DEF,
∴,即 ,
解得:DE=2,
∵AD∥BC,
∴△EDF∽△GCF,
∴,即,
∴CG=6,
∴BG=BC+CG=4+6=10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一條長(zhǎng)為的鐵絲剪成兩段,并以每一段鐵絲的長(zhǎng)度為周長(zhǎng)做成一個(gè)正方形。
(1)要使這兩個(gè)正方形的面積之和等于,那么這段鐵絲剪成兩段后的長(zhǎng)度分別是多少?
(2)兩個(gè)正方形的面積之和可能等于嗎?若能,求出兩段鐵絲的長(zhǎng)度;若不能,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一張等腰三角形紙片,AB=AC=5,BC=3,小明將它沿虛線PQ剪開(kāi),得到△AQP和四邊形BCPQ兩張紙片(如圖所示),且滿足∠BQP=∠B,則下列五個(gè)數(shù)據(jù),3,,2,中可以作為線段AQ長(zhǎng)的有_____個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)青少年發(fā)展基金會(huì)為某地“希望小學(xué)”捐贈(zèng)物資,其中文具和食品共320件,文具比食品多80件.
(1)求文具和食品各多少件;
(2)現(xiàn)計(jì)劃租用甲、乙兩種貨車共8輛,一次性將這批文具和食品全部運(yùn)往該地.已知甲種貨車最多可裝文具40件和食品10件,乙種貨車最多可裝文具和食品各20件.則中國(guó)青少年發(fā)展基金會(huì)安排甲、乙兩種貨車時(shí)有幾種方案?請(qǐng)你幫助設(shè)計(jì)出來(lái).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖1,在△ABC中,點(diǎn)D在AB上,連接CD. DE平分∠BDC交BC于點(diǎn)E,且DE∥AC, 若F為AC的中點(diǎn),連接DF.
(1)求證:DF⊥DE.
(2)若BE:CE=2:3,S△CDE=9,求△ABC的面積.
(3)如圖2,M為BC的中點(diǎn),過(guò)M作MN∥DE交AB于點(diǎn)N,交CD于點(diǎn)G,若BD=a,DG=b.試求CD的長(zhǎng)(用a、b的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校數(shù)學(xué)興趣小組的同學(xué)測(cè)量一架無(wú)人飛機(jī)P的高度,如圖,A,B兩個(gè)觀測(cè)點(diǎn)相距,在A處測(cè)得P在北偏東71°方向上,同時(shí)在B處測(cè)得P在北偏東35°方向上.求無(wú)人飛機(jī)P離地面的高度.(結(jié)果精確到1米,參考數(shù)據(jù):,,sin71°≈0.95,tan71°≈2.90)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為做好防汛工作,防汛指揮部決定對(duì)某水庫(kù)的水壩進(jìn)行加高加固,專家提供的方案是:水壩加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如圖所示,已知AE=4米,∠EAC=130°,求水壩原來(lái)的高度BC.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某經(jīng)銷商銷售一種產(chǎn)品,這種產(chǎn)品的成本價(jià)為10元/千克,已知銷售價(jià)不低于成本價(jià),且物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不高于18元/千克,市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價(jià)x(元/千克)之間的函數(shù)關(guān)系如圖所示:
(1)求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)求每天的銷售利潤(rùn)W(元)與銷售價(jià)x(元/千克)之間的函數(shù)關(guān)系式.當(dāng)銷售價(jià)為多少時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?
(3)該經(jīng)銷商想要每天獲得150元的銷售利潤(rùn),銷售價(jià)應(yīng)定為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的方程ax2+(a+2)x+9a=0有兩個(gè)不等的實(shí)數(shù)根x1,x2,且x1<1<x2,那么a的取值范圍是( 。
A.﹣<a<B.a>C.a<﹣D.﹣<a<0
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com