【題目】如圖1,將邊長(zhǎng)為1的正方形ABCD壓扁為邊長(zhǎng)為1的菱形ABCD.在菱形ABCD中,∠A的大小為α,面積記為S

1)請(qǐng)補(bǔ)全表:

α

30°

45°

60°

90°

120°

135°

150°

S

1

2)填空:

由(1)可以發(fā)現(xiàn)單位正方形在壓扁的過(guò)程中,菱形的面積隨著∠A大小的變化而變化,不妨把單位菱形的面積S記為Sα).例如:當(dāng)α30°時(shí),SS30°)=;當(dāng)α135°時(shí),SS135°)=.由上表可以得到S60°)=S   °);S150°)=S   °),…,由此可以歸納出S180°﹣α)=(   °).

3)兩塊相同的等腰直角三角板按圖2的方式放置,AD,∠AOBα,試探究圖中兩個(gè)帶陰影的三角形面積是否相等,并說(shuō)明理由(注:可以利用(2)中的結(jié)論).

【答案】(1)(2)120;30α3)兩個(gè)帶陰影的三角形面積相等

【解析】

1)過(guò)DDEAB于點(diǎn)E,當(dāng)α45°時(shí),可求得DE,從而可求得菱形的面積S,同理可求當(dāng)α60°時(shí)S的值,當(dāng)α120°時(shí),過(guò)DDFABBA的延長(zhǎng)線于點(diǎn)F,則可求得DF,可求得S的值,同理當(dāng)α135°時(shí)S的值;

2)根據(jù)表中所計(jì)算出的S的值,可得出答案;

3)將△ABO沿AB翻折得到菱形AEBO,將△CDO沿CD翻折得到菱形OCFD.利用(2)中的結(jié)論,可求得△AOB和△COD的面積,從而可求得結(jié)論.

解:(1)當(dāng)α45°時(shí),如圖1,過(guò)DDEAB于點(diǎn)E,

DEAD

SABDE,

同理當(dāng)α60°時(shí)S

當(dāng)α120°時(shí),如圖2,過(guò)DDFAB,交BA的延長(zhǎng)線于點(diǎn)F

則∠DAE60°,

DFAD

SABDF,

同理當(dāng)α150°時(shí),可求得S

故表中依次填寫(xiě):;;;

2)由(1)可知S60°)=S120°),

S150°)=S30°),

S180°﹣α)=Sα

故答案為:120;30α;

3)兩個(gè)帶陰影的三角形面積相等.

證明:如圖3將△ABO沿AB翻折得到菱形AMBO,將△CDO沿CD翻折得到菱形OCND

∵∠AOD=∠COB90°,

∴∠COD+AOB180°,

SAOBS菱形AMBOSα

SCDOS菱形OCNDS180°﹣α

由(2)中結(jié)論Sα)=S180°﹣α

SAOBSCDO

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+ca≠0)的圖象與x軸交于點(diǎn)A﹣2,0)、Bx10),且1x12,與y軸正半軸的交點(diǎn)在(0,2)的上方,頂點(diǎn)為C.直線y=kx+mk≠0)經(jīng)過(guò)點(diǎn)C、B.則下列結(jié)論:①ba;2a﹣b﹣1;2a+c0;ka+b;k﹣1. 其中正確的結(jié)論有_________.(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校七年級(jí)組織數(shù)學(xué)嘉年華活動(dòng),共評(píng)出三個(gè)獎(jiǎng)項(xiàng),年級(jí)處購(gòu)買(mǎi)了一些獎(jiǎng)品進(jìn)行表彰,相關(guān)統(tǒng)計(jì)結(jié)果如下表(不完整)所示:

一等獎(jiǎng)

二等獎(jiǎng)

三等獎(jiǎng)

合計(jì)

獲獎(jiǎng)人數(shù)(單位:人)

40

獎(jiǎng)品單價(jià)(單位:元)

12

9

6

獎(jiǎng)品金額(單位:元)

300

已知二等獎(jiǎng)的獲獎(jiǎng)人數(shù)比一等獎(jiǎng)的獲獎(jiǎng)人數(shù)多5人.你能根據(jù)所給條件,分別求出三種獎(jiǎng)項(xiàng)的獲獎(jiǎng)人數(shù)嗎?請(qǐng)根據(jù)你所設(shè)的未知數(shù),先填表(代數(shù)式不必化簡(jiǎn)),再列方程解答.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是按照一定規(guī)律畫(huà)出的一列“樹(shù)型”圖:

經(jīng)觀察可以發(fā)現(xiàn):圖(2)比圖(1)多出2個(gè)“樹(shù)枝”,圖(3)比圖(2)多出5個(gè)“樹(shù)枝”,圖(4)比圖(3)多出10個(gè)“樹(shù)枝”,照此規(guī)律,圖(7)比圖(6)多出_____個(gè)“樹(shù)枝”.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC的頂點(diǎn)都在方格線的交點(diǎn)(格點(diǎn))上.

(1)將ABC繞C點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到A′B′C′,請(qǐng)?jiān)趫D中畫(huà)出A′B′C′.

(2)將ABC向上平移1個(gè)單位,再向右平移5個(gè)單位得到A″B″C″,請(qǐng)?jiān)趫D中畫(huà)出A″B″C″.

(3)若將ABC繞原點(diǎn)O旋轉(zhuǎn)180°,A的對(duì)應(yīng)點(diǎn)A1的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在足夠大的空地上有一段長(zhǎng)為a米的舊墻MN,某人利用舊墻和木欄圍成一個(gè)矩形菜園ABCD,其中AD≤MN,已知矩形菜園的一邊靠墻,另三邊一共用了100米木欄.

(1)若a=20,所圍成的矩形菜園的面積為450平方米,求所利用舊墻AD的長(zhǎng);

(2)求矩形菜園ABCD面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(m+1,m-1).

(1)試判斷點(diǎn)P是否在一次函數(shù)y=x-2的圖象上,并說(shuō)明理由;

(2)如圖,一次函數(shù)y=-x+3的圖象與x軸、y軸分別相交于A,B,若點(diǎn)P在△AOB的內(nèi)部,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,ABAC,以AB為直徑的⊙O分別與BC、AC交于點(diǎn)D、E,過(guò)點(diǎn)D作⊙O的切線DF,交AC于點(diǎn)F

1)求證:DFAC;

2)若⊙O的半徑為4,CDF22.5°,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在數(shù)軸上點(diǎn)A表示數(shù)a,點(diǎn)C表示數(shù)c,且多項(xiàng)式x3+15x2y220的常數(shù)項(xiàng)是a,最高次項(xiàng)的系數(shù)是c.我們把數(shù)軸上兩點(diǎn)之間的距離用表示兩點(diǎn)的大寫(xiě)字母一起標(biāo)記.比如,點(diǎn)A與點(diǎn)B之間的距離記作AB

1)求a,c的值;

2)動(dòng)點(diǎn)B從數(shù)﹣6對(duì)應(yīng)的點(diǎn)開(kāi)始向右運(yùn)動(dòng),速度為每秒2個(gè)單位長(zhǎng)度.同時(shí)點(diǎn)A,C在數(shù)軸上運(yùn)動(dòng),點(diǎn)A,C的速度分別為每秒3個(gè)單位長(zhǎng)度,每秒4個(gè)單位長(zhǎng)度,設(shè)運(yùn)動(dòng)時(shí)間為t秒.

若點(diǎn)A向右運(yùn)動(dòng),點(diǎn)C向左運(yùn)動(dòng),ABBC.求t的值;

若點(diǎn)A向左運(yùn)動(dòng),點(diǎn)C向石運(yùn)動(dòng),2ABmBC的值不隨時(shí)間t的變化而改變,求出m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案